

Check Out www.bostongear.com

Our new web site contains free downloadable CAD drawings on over 84,000 products, technical specs, application/use information and sales support, **bostongear.com** is the ultimate resource for design and manufacturing engineers alike. Besides providing extensive product data, you'll also find information on our innovative delivery programs, our trade show schedule, and who to contact for sales and support.

Stop by often so you don't miss out on any of the exiting new products and services that are being introduced regularly by one of the industry leaders in power transmission.

Just click on BostSpec 2 for FREE interactive search tools, product configurators, built-in performance criteria, and downloadable CAD drawings — all designed to help you define your power transmission application requirements and select the right product for your needs. You can even submit an on-line RFQ.

Call Toll Free 888-999-9860

Centric Delivery Guarantee

We guarantee that we will build a standard clutch and ship it within 10 working days or...

We will pay the freight!

This guarantee applies to the Trig-O-Matic (ORC1-5), Trig-O-Matic Lite (LORO60-200) and the Pneumatic Disconnect Clutch (PDC04-05) in standard bore sizes.

To find your nearest distributor call 1.888.999.9860 In Canada call 1.905.625.1246 For breakdown replacement clutches, call your Boston Gear distributor about our expedited services.

TABLE OF CONTENTS

INTRODUCTION	
PRODUCT SELECTION REFERENCE GUIDE	4
QUICK SELECTION GUIDE	5
TRIG-O-MATIC LITE OVERLOAD CLUTCHES	
LOR SERIES	7
TRIG-O-MATIC OVERLOAD CLUTCHES	
ORC SERIES MODEL S	13
ORC SERIES MODEL F	25
MODEL H OVERLOAD CLUTCHES	
HOR SERIES (H1600)	33
WOR SERIES (H1900)	43
POR SERIES (H2000)	51
PNEUMATIC OVERLOAD DISCONNECT CLUTCHES	
PDC SERIES	63
VARITORQUE PNEUMATIC OVERLOAD CLUTCHES	
VOR SERIES	69
CENTRIC CENTRIFUGAL CLUTCHES	
CCC SERIES	75
ENGINEERING INFORMATION	83
TERMS AND CONDITIONS	92

OUR QUALITY POLICY

THAT THE PEOPLE OF BOSTON GEAR WILL PROVIDE
ALL PRODUCTS AND SERVICES
AT A QUALITY LEVEL
THAT MEETS OR EXCEEDS
THE EXPECTATIONS
AND THE REQUIREMENTS
OF OUR CUSTOMERS

www.centricclutch.com

Boston Gear's new, easy to navigate web site offers a variety of tools designed to simplify the selection and ordering process. Powered by advanced internet XML technology, www.bostongear.com offers 24 hour access to the industry's premier source for power transmission information:

- BostSpec2 Boston Gear's award winning open and enclosed gearing configurator. Based upon your application's requirements, select from over 84,000 parts, view specifications, even download CAD drawings.
- **Products** get the most current product information, features, benefits, or application data.
- Literature all of Boston Gear's catalogs, brochures, specification sheets, and installation manuals are available for immediate downloading.
- Distributor Locator find your local stocking Boston Gear distributor.

Whether you're looking to design a worm gear speed reducer to fit your application, get information on Boston Gear's newest products, or receive the latest news about the company, www.bostongear.com is your answer.

The Second Century of Service

Started in 1877 as a machine shop making gear cutting machines, Boston Gear has led the growth of the power transmission industry for more than a century. In its early years, Boston Gear introduced the concepts of gear standardization and stock gears – innovations of enormous benefit to power transmission system designers, specifiers and users.

Boston Gear was the early pioneer in enclosed drives, a category it still dominates with dependable, high-performance products like Worm, Helical and Bevel Gear Drives.

Today, Boston Gear provides the widest range of integrated power transmission products from one source. The convenience of this single-source capability is yours when you choose Boston Gear.

Engineering Services

The Boston Gear Engineering Group can satisfy your technical needs through skillful application of standard products or development of custom designs. Creating specials is an important aspect of customer service. It is supported by R & D personnel who use microprocessor-controlled equipment to collect and monitor data on materials and product performance.

Computer-Aided-Design (CAD) systems help Boston Gear engineers create new approaches to broad industrial challenges or specific customer needs. Computer simulation and testing at critical stages ensure that their designs are practical.

Manufacturing Excellence

Boston Gear manufactures more than 20,000 products in-house at our operation in Charlotte, North Carolina. Production is efficiently organized into manufacturing cells under group technology. For example, turning and grinding are combined under the control of a single operator in each cell. This approach encourages a sense of responsibility and pride of workmanship, to gain consistently high-quality output.

Computerized production control provides close supervision over scheduling and resource planning, coupled with the flexibility to fit your requirements smoothly into the master schedule. Other dedicated computer controls within the production department govern the ordering and delivery functions to keep operations productive and efficient.

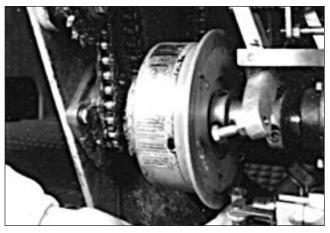
Centric Clutch History

In 1998, Boston Gear acquired the Centric Clutch Company. Since 1948, Centric Clutch has been manufacturing Centrifugal Clutches for a wide range of industries. Designed as a means to connect power in a drive train with soft start or delay capabilities, Centric's centrifugal clutch was the industry's first overload protection device with repeatable performance.

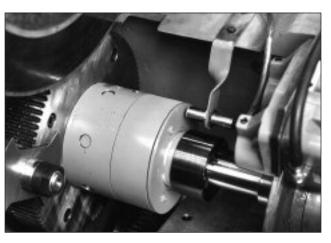
Capitalizing on the need for a dependable and repeatable torque limiter, Centric produced the Trig-O-Matic Overload Release Clutch, the original single position, mechanical torque limiting device. Customer requests for a simple cost effective overload device led to the development of the Trig-O-Matic Lite which further solidified the company's position as an industry leader.

Centric revolutionized torque limiting technology with the VariTorque, the first single position pneumatic overload clutch. The VariTorque was designed to meet the specific needs of paper converting machinery where large starting inertias, high production speeds, and the possibility of equipment failure is great.

The addition of three Model H clutches have helped to position the Centric family of products as one of the industry's premier offerings of mechanical overload protection devices.


By combining Centric's industry expertise and engineering capabilities with Boston Gear's distributor network and responsiveness oriented culture, customer expectations will continue to be met and exceeded. In a world where down time is unacceptable, Boston Gear will continue the Centric tradition of producing high quality, durable clutches quickly and efficiently. Yesterday, today, and tomorrow, Boston Gear will provide you, our valued customers, with the answers to all of your torque overload needs.

Applications


Because we realize that no two torque overload applications are the same, Boston Gear is available to put over 120 years of mechanical power transmission expertise to work for you.

Contact Us

Feel free to contact our technical support team at www.centricclutch.com or call us at 704-688-7324.

TRIG-O-MATIC OVERLOAD CLUTCH
PACKAGING MACHINE CASE PALLETIZER

VARITORQUE OVERLOAD CLUTCH PAPER CONVERTING MACHINE

H1900 OVERLOAD CLUTCH WATER TREATMENT PLANT

TRIG-O-MATIC LITE™ OVERLOAD CLUTCHES

LOR SERIES Pages 7-11

TRIG-O-MATIC™ OVERLOAD CLUTCHES

ORC SERIES MODEL S Pages 13-23

ORC SERIES MODEL F Pages 24-31

MODEL H OVERLOAD CLUTCHES

HOR SERIES Pages 33-41

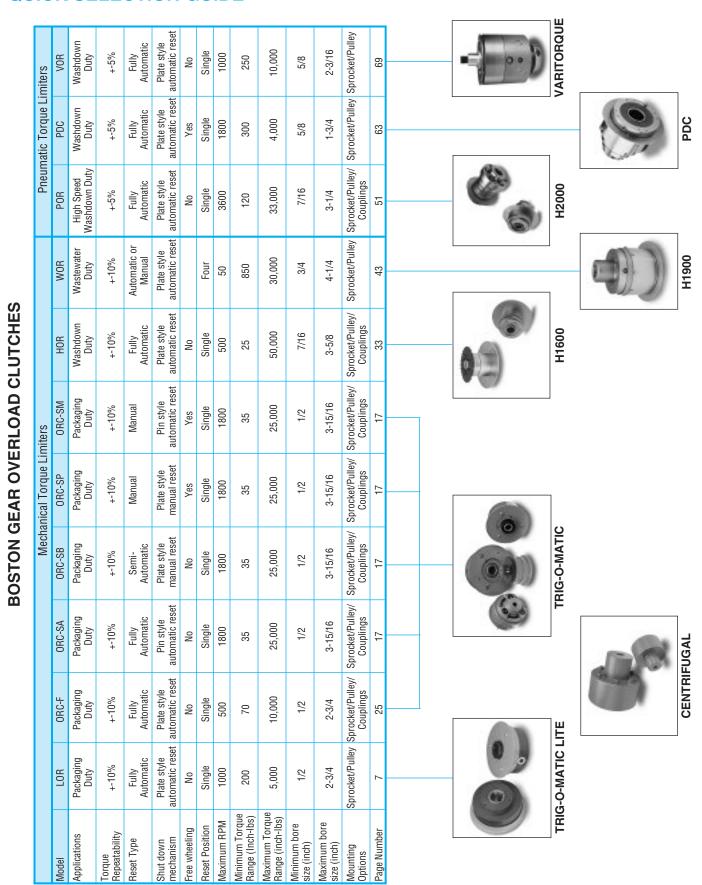
WOR SERIES Pages 43-49

POR SERIES Pages 51-60

PNEUMATIC DISCONNECT CLUTCHES

PDC SERIES Pages 63-67

VARITORQUE™ OVERLOAD CLUTCHES


VOR SERIES Pages 69-73

CENTRIC CENTRIFUGAL CLUTCHES

CCC SERIES Pages 75-80

QUICK SELECTION GUIDE

NOTES

 	·	

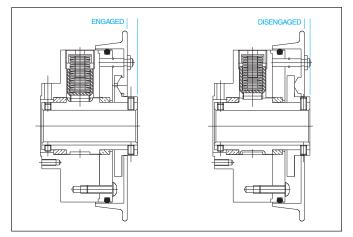
TRIG-O-MATIC LITE MECHANICAL OVERLOAD CLUTCHES

LOR SERIES

SECTION CONTENTS

8
8
9
9
10
11

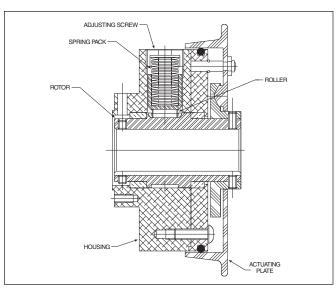
TRIG-O-MATIC LITE OVERLOAD CLUTCHES LOR SERIES


FEATURES

- Simple cost-effective design
- Bi-directional operation
- Single position reset
- Reliable limit switch actuating plate
- Easy torque adjustment
- Maximum torque limit stop
- Through shaft or end shaft mounting
- Large bore capacity
- Bored to size on request
- Torq/Gard interchange

Torque transmission between the roller and the rotor is the key to the disengagement of the clutch. The roller is held in the detent of the rotor by the radial load generated by compressing the spring pack. This load determines the torque capacity of the clutch. Increasing or decreasing the spring compression provides an adjustment to the torque capacity. When a torque overload condition occurs, the roller moves out of the detent and free-wheels much like a needle bearing. This rolling action increases the efficiency in which the clutch operates and reduces any fluctuation of the torque setting caused by frictional changes. Refer to Figure 2.

FIGURE 2



The movement of the actuating plate during disengagement can be used to trip a limit switch or sensor and signal a torque overload condition. The drive should be shut down immediately and the source of the overload detected and cleared. The automatic reset feature of the clutch allows it to re-engage in its single position without manual assistance. Simply restart the drive and the clutch is again ready to provide accurate and dependable disconnect protection for your equipment.

OPERATING PRINCIPLES

The LOR Series Trig-O-Matic Lite is an automatic reset, roller detent style clutch. It was designed to be cost-effective without sacrifice to accurate and dependable disconnect protection for mechanical equipment. Refer to Figure 1.

FIGURE 1

FLANGE WITH PROXIMITY PLATE

As the Trig-O-Matic Lite overload clutch is disengaged, the flange (Actuating Plate) moves 0.18 inches. This movement can be used to trip a mechanical limit switch and signal a torque overload condition. Many applications require that a proximity sensor be used in place of the mechanical limit switch which necessitates the addition of a metallic plate to the nonmetallic flange. This flange can be ordered on the Trig-O-Matic Lite overload clutch by indicating a letter P in the catalog number after the size (e.g., LOR-060P-AP16).

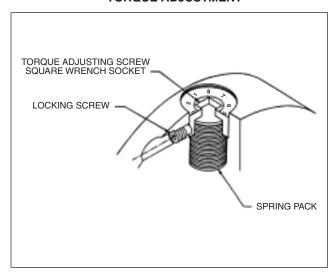
SELECTION

- Determine overload release torque by one of these methods:
 - a. Use the torque formula with horsepower and RPM specific to the selected clutch location. A service factor may be required for high inertia starts, reversing or peak load conditions, (refer to Page 86 for service factor information. For average applications, a service factor "SF" of 1.25 is recommended):

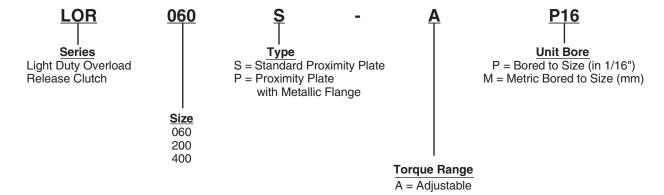
Torque (Lb. In.) =
$$\frac{HP \times 63025}{RPM}$$
 X SF

- b. Determine the "weak link" in the drive train, (i.e. chain, reducer, belt or shaft). Select an overload release torque that is below the "weak link's" maximum torque rating.
- c. Physically measure the drive torque with a torque wrench and size accordingly.
- Determine the bore size, keyway, and taper bore or straight bore bushing model.
- 3. Refer to the Basic Selection Chart for the appropriate clutch size.
- 4. Refer to Page 10 for ratings and dimensions.
- 5. Refer to Page 85 for recommended mounting locations.

BASIC SELECTION CHART


Clutch	Bore		Torque Range	Maximum
Size	Min	Max*	(Lb. ln.)	RPM
060	.500	1.4375	200-700	1,000
200	1.000	2.1250	600-2,000	1,000
400	1.125	2.7500	2,000-5,000	600

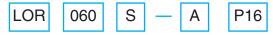
^{*}Max bores will require flat keys (supplied with unit).


TORQUE ADJUSTMENT

Each clutch is tested throughout the torque range then set at the minimum torque range value at the factory. The torque dial label is indexed to a match mark on the clutch at the number "1" location. The torque dial label has eight hash marks evenly spaced at 45 degrees. To increase the torque, loosen the locking screw and turn the adjusting screw clockwise. When the desired torque value is achieved, secure the torque adjustment screw by tightening the locking screw.

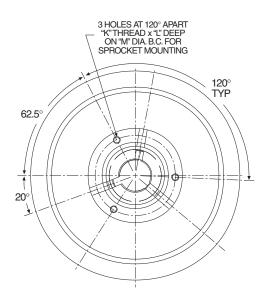
TORQUE ADJUSTMENT

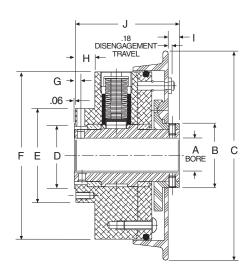
LOR SERIES PART NUMBERING SYSTEM



HOW TO ORDER

When ordering a Trig-O-Matic Lite LOR Series Overload Clutch, please include code letters/numbers for series, size, type, torque range, and unit bore. Not all combinations are possible. Please refer to Page 10 for details.


Example:


Required Size 060 Trig-O-Matic Lite Overload Clutch, standard flange, adjustable torque range, with a one inch bore:

TRIG-O-MATIC LITE OVERLOAD CLUTCHES LOR SERIES

STRAIGHT BORE

ALL DIMENSIONS IN INCHES

Clutch Size	A* +.001/000	В	С	D +.002/004	Е	F	G	Н	I	J	K	L	М
060	1.2500	2.25	7.50	2.375	3.38	6.00	.24	.74	.40	3.77	1/4-20	0.56	2.875
200	1.9375	2.98	9.50	3.250	5.25	8.00	.22	.94	.59	4.91	3/8-16	0.75	4.500
400	2.4375	4.00	11.50	4.500	7.50	10.00	.38	1.31	.82	6.29	1/2-13	1.12	6.500

^{*}Standard bore, refer to table below for other sizes.

RATINGS

Clutch		Bores (inch)			Torque Range	Max.	WR ²	Weight
Size	Min	Standard	Max. (1)	Max (2)	(LbIn.)	RPM*	(Lbln.²)	(Lbs.)
060	.5000	1.2500	1.3750	1.4375	200-700	1,000	39	7.5
200	1.0000	1.9375	2.0000	2.1250	600-2,000	1,000	181	19
400	1.1250	2.4375	2.6250	2.7500	2,000-5,000	600	559	39

^{*}Maximum RPM dependent on operation of clutch with limit switch and immediate shut down.

BORE TOLERANCES

Bores	Tolerance
0" to 1"	+.0005/0000
1" to 3"	+.0010/0000

STANDARD KEYWAYS

Bore Range	Square
Over – To	WxD
5/16 - 7/16	3/32 x 3/64
7/16 – 9/16	1/8 x 1/16
9/16 – 7/8	3/16 x 3/32
7/8 — 1-1/4	1/4 x 1/8
1-1/4 — 1-3/8	5/16 x 5/32
1-3/8 — 1-3/4	3/8 x 3/16
1-3/4 - 2-1/4	1/2 x 1/4
2-1/4 - 2-3/4	5/8 x 5/16

Clutches are shipped set for the minimum torque value unless specified.

Refer to Page 9 for ordering information.

⁽¹⁾ Square Key

⁽²⁾ Flat Key

SUGGESTED MOUNTING ARRANGEMENTS

Boston Gear can provide assistance for virtually any drive layout. Plate sprockets, timing belt pulleys, gears, and couplings can be provided upon request.

PLATE SPROCKET MOUNT WITH THROUGH SHAFT

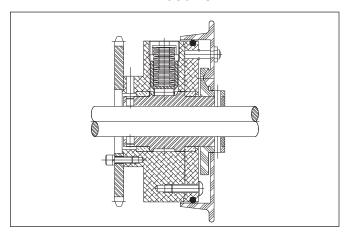
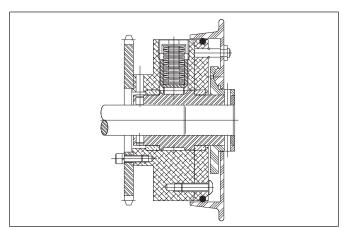
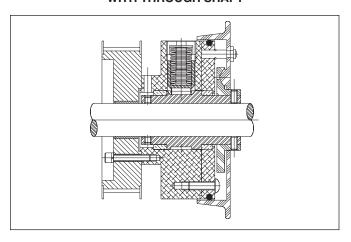




PLATE SPROCKET MOUNT WITH END SHAFT

TIMING BELT PULLEY MOUNT WITH THROUGH SHAFT

MINIMUM ACCEPTABLE PLATE SPROCKET MOUNTS*

Minimum Number of Teeth per Pitch Size								
Clutch Size	#25 1/4 Pitch	#35 3/8 Pitch	#40 1/2 Pitch	#50 5/8 Pitch	#60 3/4 Pitch	#80 1 Pitch	#100 1-1/4 Pitch	
060	47	32	25	21	18	_	_	
200	_	48	37	30	26	20	_	
400	_	_	51	42	35	27	23	

^{*}Please contact Boston Gear for Sprocket Clutch Assemblies.

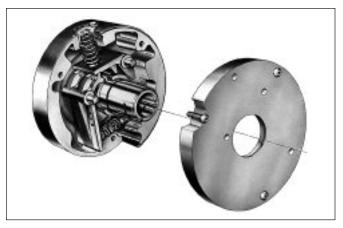
TORQUE LIMITER APPLICATION DATA

FAX TO 704-688-7403

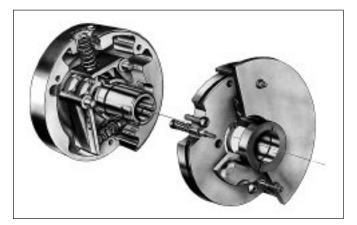
Please select your product intent below and provide as much application information as possible.

1. Application: New Existing - Replacement Model #	6. Shut Down Method: Prox Plate Pin Style (ORC only)
2. Power transmission requirements at clutch location:	Use the space below to note any relevant application data or to detail your question.
☐ Limiting Torque Level	
3. Type: Mechanical Pneumatic	
4. Type: □ Fully Automatic □ Manual □ Semi Automatic (ORC model only)	
5. Method of Torque Transmission: ☐ Flexible Coupling ☐ Rigid Coupling ☐ Sprocket Mount ☐ Other:	

TRIG-O-MATIC MECHANICAL OVERLOAD CLUTCHES


SECTION CONTENTS

FEATURES	14
SELECTION	15
STANDARD MODEL S	
Operating Principles	16
How to Order	17
Ratings and Dimensions	18
Mounting and Sprocket Selection	19
Options	23
MODEL F	
Operating Principles	24
How to Order	25
Ratings and Dimensions	26
Mounting and Sprocket Selection	27
Options	31

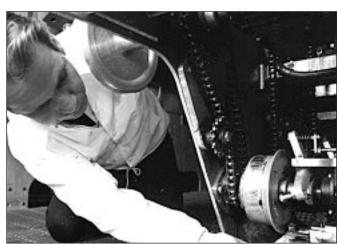

TRIG-O-MATIC OVERLOAD CLUTCHES ORC SERIES

FEATURES

- Bi-directional operation
- Single positioning for re-engagement at the exact cycle point at which it released
- Limit switch actuation for remote detection of overload condition
- Completely enclosed for dirty applications
- Automatic or manual reset
- Various configurations for direct and indirect drives
- Six sizes (Model F five sizes) to accommodate various bore and torque ranges

STANDARD MODEL S

FULLY AUTOMATIC MODEL F


The Trig-O-Matic's unique "Trigger" action design disconnects the load at the instant an overload occurs and at the exact torque limit you set. When the overload condition is corrected, the clutch resets at the exact cycle point and torque at which it released.

The ORC Series Trig-O-Matic Overload Clutch is available in two models: the Standard Model S and the Fully Automatic Model F. Both provide single position engagement and a means to signal an overload condition. Each model is available in various sizes and types to adapt to your drive train. They incorporate reliability, repeatability and adjustability to protect your machinery from costly damage or downtime.

APPLICATIONS

The ORC Series Trig-O-Matic Overload Release Clutch can be applied on any drive train where the protection of reducers, indexers, chain, sprockets or product is required. It can replace less precise and less reliable devices such as shear pins and friction clutches.

Typical applications include: packaging machinery, paper converting machinery, baking equipment, bottling and capping machinery, indexing machinery, labeling machinery, conveyors, presses and water treatment equipment.

SELECTION

- Determine the overload release torque by one of these methods:
 - a. Use the torque formula with horsepower and RPM specific to the selected clutch location. A service factor may be required for high inertia starts, reversing or peak load conditions, (refer to Page 86 for service factor information. For average applications, a service factor "SF" of 1.25 is recommended):

Torque (Lb. In.) =
$$\frac{HP \times 63025}{RPM}$$
 X SF

- b. Determine the "weak link" in the drive train, (i.e. chain, reducer, belt or shaft). Select an overload release torque that is below the "weak link's" maximum torque rating.
- c. Physically measure the drive torque with a torque wrench and size accordingly.
- 2. Determine the bore size(s) and keyway(s):
 - a. Shaft size at the clutch location determines the clutch bore.
 - b. Shaft size at the coupling location determines the coupling bore (if applicable).
- 3. Choose the appropriate Model (S or F), based upon the drive layout and the application's requirements.
- 4. Refer to the Basic Selection Chart for the appropriate clutch size.
- 5. Refer to Part Numbering System to complete selection.

The **Standard Model S** is Boston Gear's basic low-cost unit on which various optional features can be added. The clutch mechanism is available in automatic or manual reset. Typically, a manual reset clutch is used where it will run disengaged for extended periods of time. The automatic reset is generally used in conjunction with a limit switch to shut the drive down. The Standard Model is typically used to replace shear pins and where access to the clutch is available. See page 17.

The **Fully Automatic Model F** includes all the features available in the Standard Model plus an automatic switch actuating mechanism, an automatic clutch mechanism and three mounting styles. The Model F is generally used where the unit is not easily accessible. This model is a complete overload clutch designed especially for production and packaging machinery. See page 25.

TRIG-O-MATIC MODEL FEATURE COMPARISONS

ORC Series Model F
Bi-directional
Single Position
Automatic Clutch Reset
Automatic Clutch neset
Clutch Types B, C, N, R, T
Three Mounting Styles
Fully Automatic
Limit Switch Plate Actuator
Additional Features:
Torque Selector Dial
Max. Torque Limit Stop
Grease Pack & Relief Fittings
Locking Collar Mounting
Optional:
Balancing
One-Directional Feature

BASIC SELECTION CHART

	Standard Model S					Fully Automatic Model F				
Clutch Size	Max. Bore	Torque Code	Torque Range (Lb. In.)		Clutch Size	Max. Bore	Torque Code		Range . In.)	
Size	(Inch)*	Code	Min.	Max.	Size	(Inch)*	Code	Min.	Max.	
		L	35	100			L	70	140	
1	0.8750	M	75	275	1	0.7500	M	110	275	
		Н	200	400			Н	260	400	
		L	50	200			L	100	200	
2	1.1875	M	200	600	2	1.1250	M	200	600	
		Н	400	1,000			Н	400	1,000	
		L	200	850			L	200	850	
3	1.8120	M	800	2,200	3	1.7500	M	800	2,200	
		Н	1,200	3,000			Н	1,200	3,000	
		L	600	1,400			L	600	1,400	
4	2.3120	M	1,200	3,000	4	2.1250	M	1,200	3,000	
		Н	2,850	5,000			Н	2,850	5,000	
		L	1,600	3,000			L	1,600	3,000	
5	3.0000	M	2,500	6,000	5	2.7500	M	2,500	6,000	
		Н	4,000	10,000			Н	4,000	10,000	
		L	4,000	8,000			_	_	_	
6	3.9375	M	7,500	14,000	_	_	_	_	_	
		Н	12,500	25,000			<u> </u>	_	_	

^{*}Larger bores may require flat keys (supplied with unit).

TRIG-O-MATIC ORC SERIES STANDARD MODEL S

OPERATING PRINCIPLES

The Standard Model S ORC Series Trig-O-Matic Overload Release Clutch consists of two basic components: the rotor and the housing assembly. The clutch rotor is keyed and secured to the drive shaft with a setscrew.

The housing assembly includes a drive pawl and a reset pawl which are pivoted within the clutch housing. The drive pawl is held engaged in the rotor notch by the combined pressure of the drive and reset springs as shown in Figure 1. The combined pressure of these two springs determines the maximum torque which is transmitted without overload. With the clutch mechanism in the engaged position shown in Figure 1, the rotor and housing are held together and the entire unit rotates with the drive shaft at the same speed.

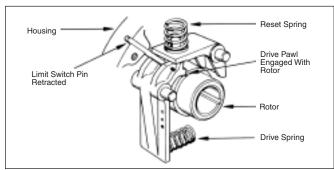


FIGURE 1 - ENGAGED

The Standard Model Trig-O-Matic is available in two clutch reset types: Manual and Automatic.

MANUAL RESET

The instant an overload occurs, the pressure of the drive and reset springs is overcome by the extra force applied to them. The drive pawl is forced out of its engaged position from the rotor and as it pivots up, the reset pawl lifts and locks it out of contact with the rotor as shown in Figure 2. The clutch then rotates freely.

When the overload condition has been corrected, the clutch is reset by inserting a hexagon wrench in the reset screw and turning the screw clockwise until the reset pawl releases the drive pawl. When the drive pawl re-engages with the rotor, the reset screw must be backed out to its original stop position. This is essential to restore the torque to its original setting.

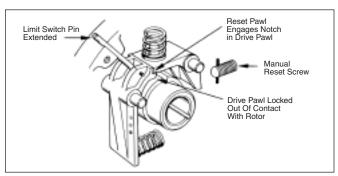


FIGURE 2 DISENGAGED - MANUAL

FULLY AUTOMATIC OR SEMI-AUTOMATIC

The instant an overload occurs, the pressure of the drive and reset springs is overcome by the extra force applied to them. The drive pawl is forced out of its engaged position from the rotor. After one revolution the drive pawl will automatically return to its engaged position. If the overload is still present, it will not seat and will continue to rotate until overload has been removed. The drive should be stopped as soon as possible. After the overload condition has been corrected the drive must be "jogged" until the drive pawl engages with the rotor.

Note: Models "SB" and "SP" are semi-automatic because the actuating plate must be manually reset. See models F (page 25) or SA for fully automatic operation.

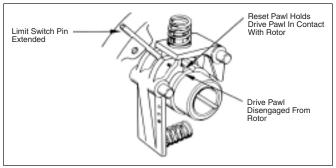


FIGURE 3
DISENGAGED - AUTOMATIC

LIMIT SWITCH PIN

A Limit Switch Pin is furnished as a standard item for model SA and SM to activate a limit switch that triggers the electrical controls. The travel of the Limit Switch Pin protruding radially from the clutch housing is controlled by the drive pawl motion upon disengagement. The Limit Switch Pin can only be effective if the housing **continues** to turn when an overload occurs and the rotor stops, (i.e., the housing is the driver and the rotor is the driven). The housing RPM must be considered to determine the time for the Limit Switch Pin to revolve around before contacting the limit switch.

The standard Limit Switch Pin extension is 1-inch, however, it can be made flush with the housing when engaged. If the Limit Switch Pin is not required, it can be omitted from the assembly with a "Z1" suffix.

If instantaneous operation of a limit switch is required or if the housing stops upon overload, see Page 23 for the Limit Switch Plate Actuator or the Model F on page 25. Units which include this device do not have the Limit Switch Pin.

TORQUE SELECTOR DIAL

The torque selector dial shown in Figure 4 is a standard feature on all Standard Model S Trig-O Matic clutches. Each clutch is individually calibrated to specific torque values. The housing has two milled marks indicating minimum and maximum torque. In addition, these values are stamped on the housing adjacent to each mill mark. To adjust the torque, loosen the "lock screw", turn the torque adjusting screw (stamped #9) until it is flush with the milled depth and the red scribed lines match the required output position. Additional marks can be indicated upon request.

MAXIMUM TORQUE LIMIT STOP

A maximum torque limit stop is supplied to prevent clutch lock-up. In conjunction with a torque selector dial, the maximum value indicated by the deepest milled mark can not be exceeded.

GREASE PACK FITTINGS

Grease pack fittings are supplied countersunk into the clutch housing to pack the clutch cavity, preventing corrosion. This feature is especially suitable for outdoor or washdown service.

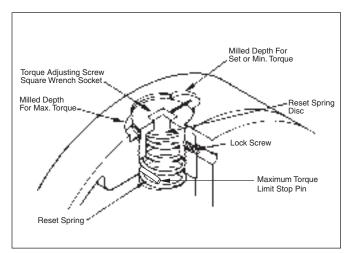
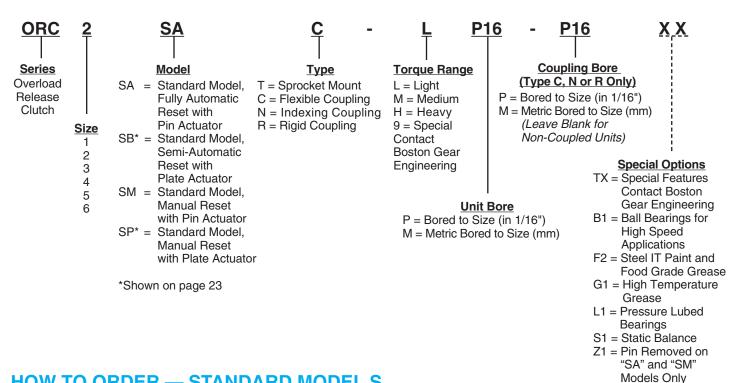
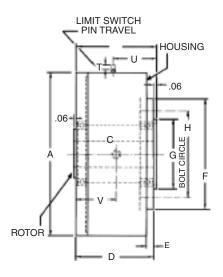



FIGURE 4

ORC MODEL S SERIES PART NUMBERING SYSTEM

HOW TO ORDER — STANDARD MODEL S


When ordering an ORC Series Trig-O-Matic Overload Clutch, please include code letters for series, size, model, type, torque range, unit bore and coupling bore (if applicable). Not all combinations are possible.

Required Size 2 Trig-O-Matic Overload Clutch, Standard Model S, automatic reset with pin actuator, flexible coupling, light torque range, with a one inch unit bore and a one inch coupling bore:

TYPE T SPROCKET, SHEAVE, PULLEY MOUNTING

For additional information on Model SB and SP, see page 23.

ALL DIMENSIONS IN INCHES

Clutch Size	Α	С	D	Е	F	G +.000/002	H Bolt Circle	Т	U	V	Weight (Lbs.)
1	4.50	2.31	2.25	0.37	2.87	1.875	2.375	.13	1.28	1.03	6
2	6.00	2.75	2.69	0.43	3.68	2.250	3.000	.13	1.53	1.22	12
3	8.00	3.50	3.44	0.50	4.87	3.250	4.125	.13	1.94	1.56	26
4	10.00	4.47	4.41	0.68	6.12	3.203	5.000	.13	2.66	1.81	55
5	12.00	5.12	5.06	0.81	7.50	4.125	6.250	.13	3.00	2.12	100
6	16.00	6.25	6.19	1.06	10.00	6.000	8.750	.25	3.68	2.56	215

Refer to Page 19 for mounting hole patterns.

RATINGS

Clu	ıtch	Torque	e Range	(Lb. In.)	Max.	WR ²
S	ize	L	М	Н	RPM*	(LbIn.2)
1	Min.	35	75	200	1,800	14
'	Max.	100	275	400	1,600	14
2	Min.	50	200	400	1,200	54
	Max.	200	600	1,000	1,200	54
3	Min.	200	800	1,200	1,200	212
3	Max.	850	2,200	3,000	1,200	212
4	Min.	600	1,200	2,850	900	693
4	Max.	1,400	3,000	5,000	900	093
5	Min.	1,600	2,500	4,000	600	1,818
5	Max.	3,000	6,000	10,000	000	1,010
6	Min.	4,000	7,500	12,500	600	6,940
0	Max.	8,000	14,000	25,000	000	0,940

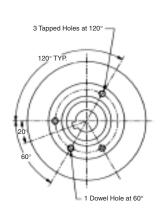
Clutches are shipped set for the minimum torque value of the selected range.

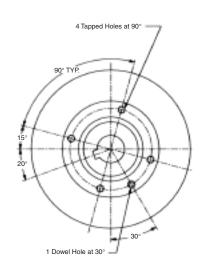
Sprockets, gears, sheaves and pulleys can be mounted upon request. Refer to Page 19 for sprocket sizes.

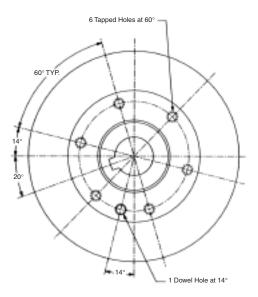
Refer to Page 17 for ordering information.

CLUTCH BORES

Clutch	В	Bores (inch)						
Size	Min.	Max. (1)	Max. (2)					
1	0.5000	0.7500	0.8750					
2	0.6250	1.1250	1.1875					
3	0.7500	1.7500	1.8125					
4	1.1250	2.2500	2.3125					
5	1.5000	2.7500	3.0000					
6	2.0000	3.7500	3.9375					


Refer to Page 84 for a complete list of bore codes.


- (1) Square Key
- (2) Flat Key


^{*}For speeds exceeding 75% of the maximum RPM, Ball Bearings are recommended.

ORC SERIES MODEL S AND F

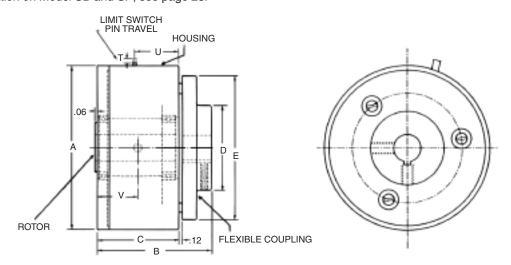
TYPE T MOUNTING HOLE PATTERNS

CLUTCH SIZES 1 AND 2

CLUTCH SIZES 3 AND 4

CLUTCH SIZES 5 AND 6

			Mountin	g Holes		
Clutch Size	Qty.	Thread Size	Tap Depth	Bolt Circle	Pilot Dia. +.000 002	Dowel Size
1	3	1/4-20	.50	2.375	1.875	.25
2	3	5/16-18	.50	3.000	2.250	.31
3	4	3/8-16	.62	4.125	3.250	.37
4	4	1/2-13	.87	5.000	3.203	.50
5	6	5/8-11	1.00	6.250	4.125	.62
6	6	5/8-11	1.00	8.750	6.000	.62


MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE T CLUTCHES

					Standard	Chain Size	and Pitch				
Clutch	#25	#35	#40	#41	#50	#60	#80	#100	#120	#140	#160
Size	1/4	3/8	1/2	1/2	5/8	3/4	1	1-1/4	1-1/2	1-3/4	2
	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch
1	40	28	22	22	18						
2	54	36	28	28	22	19			Not Reco	mmended	
3		45	34	36	28	25	19				
4			42	45	36	30	23	19			
5	Consult Factory 42					36	30	22	19	17	
6		C C. IOGIC I				48	36	30	24	21	19

For smaller sprockets, consult Boston Gear Engineering at 704-688-7324.

TYPE C FLEXIBLE COUPLING

For additional information on Model SB and SP, see page 23.

ALL DIMENSIONS IN INCHES

Clutch Size	А	В	С	D	Е	U	Т	V	Angular Misalignment*	Max. Parallel Offset*	Weight (Lbs.)
1	4.50	3.94	2.31	2.00	4.25	1.28	.13	1.03	< 1°	.012	10
2	6.00	4.62	2.75	2.56	5.25	1.53	.13	1.22	< 1°	.015	18
3	8.00	5.87	3.50	2.50	5.87	1.94	.13	1.56	< 1°	.016	39
4	10.00	7.71	4.47	4.87	9.12	2.66	.13	1.81	< 1°	.027	94
5	12.00	8.87	5.12	5.68	10.50	3.00	.13	2.12	< 1°	.031	163
6	16.00	11.12	6.25	7.63	13.25	3.68	.25	2.56	< 1°	.045	354

^{*}Parallel offset and angular misalignment are proportionally reduced if both are present

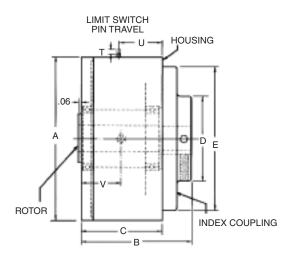
RATINGS

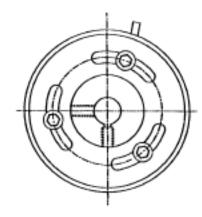
Clu	ıtch	Torque	e Range	(Lb. In.)	Max.	WR ²
S	ize	L	М	Н	RPM*	(LbIn.2)
1	Min.	35	75	200	1,800	25
'	Max.	100	275	400	1,600	25
2	Min.	50	200	400	1,200	80
_	Max.	200	600	1,000	1,200	00
3	Min.	200	800	1,200	1,200	300
3	Max.	850	2,200	3,000	1,200	300
4	Min.	600	1,200	2,850	900	1,190
4	Max.	1,400	3,000	5,000	900	1,190
5	Min.	1,600	2,500	4,000	600	2,850
5	Max.	3,000	6,000	10,000	000	2,000
6	Min.	4,000	7,500	12,500	600	10,900
0	Max.	8,000	14,000	25,000	000	10,900

Clutches are shipped set for the minimum torque value of the selected range.

CLUTCH AND COUPLING BORES

Clutch	Tuno	E	Bores (inch	1)
Size	Type	Min.	Max. (1)	Max. (2)
1	Clutch	0.5000	0.7500	0.8750
'	Coupling	0.5000	1.5000	1.5625
2	Clutch	0.6250	1.1250	1.1875
	Coupling	0.6250	1.8125	1.9375
3	Clutch	0.7500	1.7500	1.8125
3	Coupling	0.7500	1.7500	1.8125
4	Clutch	1.1250	2.2500	2.3125
7	Coupling	1.1250	3.6875	3.8125
5	Clutch	1.5000	2.7500	3.0000
5	Coupling	1.5000	4.2500	4.5000
6	Clutch	2.0000	3.7500	3.9375
O	Coupling	2.0000	5.5000	5.7500


Refer to Page 84 for a complete list of bore codes.


- (1) Square Key
- (2) Flat Key

^{*}For speeds exceeding 75% of the maximum RPM, ball bearings are recommended.

TYPE N INDEXING COUPLING

For additional information on Model SB and SP, see page 23.

ALL DIMENSIONS IN INCHES

Clutch Size	А	В	С	D	Е	Т	U	V	Weight (Lbs.)
1	4.50	3.81	2.31	2.00	4.25	.13	1.28	1.03	10
2	6.00	4.44	2.75	2.56	5.25	.13	1.53	1.22	18
3	8.00	5.75	3.50	3.00	7.00	.13	1.94	1.56	39
4	10.00	7.59	4.47	4.87	9.12	.13	2.66	1.81	94
5	12.00	8.68	5.12	5.68	10.50	.13	3.00	2.12	163
6	16.00	10.94	6.25	8.18	13.25	.25	3.68	2.56	354

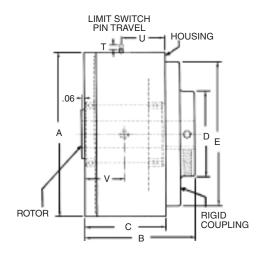
RATINGS

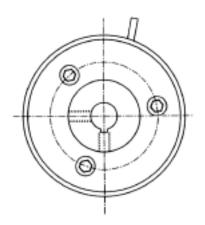
Clu	ıtch	Torque	e Range	(Lb. In.)	Max.	WR ²	
S	ize	L	M	Н	RPM*	(LbIn. ²)	
1	Min.	35	75	200	1,800	25	
'	Max.	100	275	400	1,000	23	
2	Min.	50	200	400	1,200	80	
	Max.	200	600	1,000	1,200	00	
3	Min.	200	800	1,200	1,200	300	
J	Max.	850	2,200	3,000	1,200	300	
4	Min.	600	1,200	2,850	900	1,190	
-	Max.	1,400	3,000	5,000	900	1,190	
5	Min.	1,600	2,500	4,000	600	2,850	
3	Max.	3,000	6,000	10,000	000	2,000	
6	Min.	4,000	7,500	12,500	600	10,900	
	Max.	8,000	14,000	25,000	000	10,900	

Clutches are shipped set for the minimum torque value of the selected range.

*For speeds exceeding 75% of the maximum RPM, ball bearings are recommended.

CLUTCH AND COUPLING BORES


Clutch	Typo		Bores (inc	ch)
Size	Type	Min.	Max. (1)	Max. (2)
1	Clutch	0.5000	0.7500	0.8750
'	Coupling	0.5000	1.5000	1.5625
2	Clutch	0.6250	1.1250	1.1875
	Coupling	0.6250	1.8125	1.9375
3	Clutch	0.7500	1.7500	1.8125
3	Coupling	0.7500	1.7500	1.8125
4	Clutch	1.1250	2.2500	2.3125
1	Coupling	1.1250	3.6875	3.8125
5	Clutch	1.5000	2.7500	3.0000
3	Coupling	1.5000	4.2500	4.5000
6	Clutch	2.0000	3.7500	3.9375
J	Coupling	2.0000	5.5000	5.7500


Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

TYPE R RIGID COUPLING

For additional information on Model SB and SP, see page 23.

ALL DIMENSIONS IN INCHES

Clutch Size	А	В	С	D	Е	Т	U	V	Weight (Lbs.)
1	4.50	3.81	2.31	2.00	4.25	.13	1.28	1.03	10
2	6.00	4.44	2.75	2.56	5.25	.13	1.53	1.22	18
3	8.00	5.75	3.50	3.00	7.00	.13	1.94	1.56	39
4	10.00	7.59	4.47	4.87	9.12	.13	2.66	1.81	94
5	12.00	8.68	5.12	5.68	10.50	.13	3.00	2.12	163
6	16.00	10.94	6.25	8.18	13.25	.25	3.68	2.56	354

RATINGS

Clu	ıtch	Torque	e Range	(Lb. In.)	Max.	WR ²
S	ize	L	М	Н	RPM*	(LbIn.2)
1	Min.	35	75	200	1,800	25
'	Max.	100	275	400	1,000	23
2	Min.	50	200	400	1,200	80
	Max.	200	600	1,000	1,200	00
3	Min.	200	800	1,200	1,200	300
3	Max.	850	2,200	3,000	1,200	300
4	Min.	600	1,200	2,850	900	1,190
4	Max.	1,400	3,000	5,000	900	1,190
5	Min.	1,600	2,500	4,000	600	2,850
5	Max.	3,000	6,000	10,000	000	2,000
6	Min.	4,000	7,500	12,500	600	10,900
0	Max.	8,000	14,000	25,000	000	10,300

Clutches are shipped set for the minimum torque value of the selected range.

CLUTCH AND COUPLING BORES

Clutch	T		Bores (inc	ch)
Size	Type	Min.	Max. (1)	Max. (2)
1	Clutch	0.5000	0.7500	0.8750
'	Coupling	0.5000	1.5000	1.5625
2	Clutch	0.6250	1.1250	1.1875
	Coupling	0.6250	1.8125	1.9375
3	Clutch	0.7500	1.7500	1.8125
3	Coupling	0.7500	1.7500	1.8125
4	Clutch	1.1250	2.2500	2.3125
4	Coupling	1.1250	3.6875	3.8125
5	Clutch	1.5000	2.7500	3.0000
3	Coupling	1.5000	4.2500	4.5000
6	Clutch	2.0000	3.7500	3.9375
0	Coupling	2.0000	5.5000	5.7500

Refer to Page 84 for a complete list of bore codes. (1) Square Key

- (2) Flat Key

^{*}For speeds exceeding 75% of the maximum RPM, ball bearings are recommended.

ORC SERIES MODEL S OPTIONS

SEMI-AUTOMATIC MODEL SB AND SP PROXIMITY PLATES

LIMIT SWITCH PLATE ACTUATOR, MODELS SB/SC AND SP/SS

Available for all types, the Standard Model S Trig-O-Matic Limit Switch Plate Actuator provides instant operation of a limit switch to shut down the drive or to actuate an alarm should an overload occur. When an overload occurs, the drive pawl motion releases the actuating plate and it trips a limit switch. The total motion of the plate is .31 of an inch (See Figure 5).

After the overload has been cleared and the clutch is reengaged, the actuating plate is manually returned to its normal operating position by applying equally spaced pressure to the surface of the plate.

A limit switch should be able to operate within the plate travel of .31 of an inch. Wire the switch in parallel with a jog circuit so that the drive can then be indexed to the start/run circuit.

BALANCING

Static balancing is available for applications that exceed 50% of the catalog maximum RPM. Always consult the factory with complete drive details and layout for these high speed applications. Ball bearings are recommended for speeds exceeding 75% of maximum rating and is available with a "B1" suffix.

CUSTOM VARIATIONS

Sprockets, sheaves, pulleys and gears can be supplied and mounted to the clutch. Contact Boston Gear Engineering at 704-688-7324.

Bores and keyways (i.e. metric, non-standard)

SPECIAL FINISHES

All clutches are supplied with a standard lacquer finish. Special coatings, finishes, or paints are also available upon request. Adding suffix - F2 to the model number will provide STEEL IT paint and food grade grease.

PRESSURE LUBE MODEL

Pressure lube bronze bearings are preferred for use in harsh environments such as wastewater treatment plants or installations requiring wash-down service. Grease fittings are furnished to permit periodic lubrication to the inside diameter of the sleeve bearings.

The Pressure Lube Model Trig-O-Matic is available with either the Limit Switch Pin or the Limit Switch Plate Actuator and is available by adding an L1 suffix to the model number.

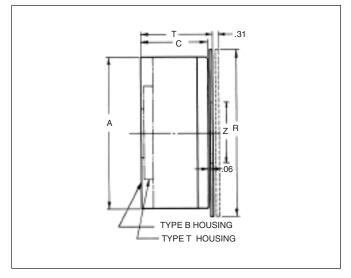


FIGURE 5

ALL DIMENSIONS IN INCHES

Clutch Size	Α	С	R*	Т	Z
1	4.50	2.31	5.50	2.53	2.00
2	6.00	2.75	7.00	2.97	3.25
3	8.00	3.50	9.50	3.72	4.50
4	10.00	4.47	11.50	4.69	5.75
5	12.00	5.12	13.50	5.34	5.50
6	16.00	6.25	17.50	6.50	7.25

*The R dimension may be reduced to the A dimension if required, specify SC for a semi-automatic clutch with a reduced plate and SS for a manual reset with a reduced diameter plate. Example: ORC2SCTMP16

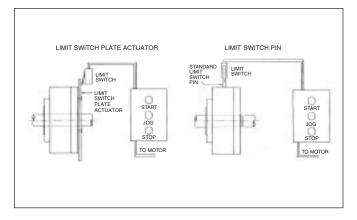


FIGURE 6

Figure 6 illustrates two methods of utilizing a single limit switch to detect an overload condition.

TRIG-O-MATIC ORC SERIES FULLY AUTOMATIC MODEL F OPERATING PRINCIPLES

The Fully Automatic Model F Trig-O-Matic Overload Release Clutch consists of three basic components: the rotor, the housing assembly and the automatic limit switch actuating plate assembly. The clutch rotor is keyed and secured with a locking collar (Models FJ and FG) or, with a setscrew (Model FR).

The housing assembly includes a drive pawl and a reset pawl which are pivoted within the clutch housing. The drive pawl is held in its engaged position by the combined pressure of the drive and reset springs as shown in Figure 7. The combined pressure of these two springs determines the maximum torque which is transmitted without overload. With the clutch mechanism in the engaged position, the rotor and housing are held together and the entire unit rotates with the drive shaft at the same speed.

When an overload occurs, the rotor rotates from its normal position within the housing. At this instant, the combined pressure of the drive and reset springs is overcome by the extra force applied to them and the drive pawl disengages from the rotor. The pressure applied by both springs holds the drive pawl in contact with the rotor, (See Figure 8). After one revolution, the drive pawl will automatically re-engage.

The automatic limit switch actuating plate assembly is incorporated to provide a means by which an external limit switch can be actuated to stop the drive.

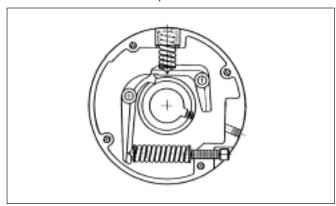


FIGURE 7 - ENGAGED

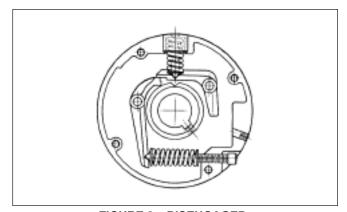


FIGURE 8 – DISENGAGED

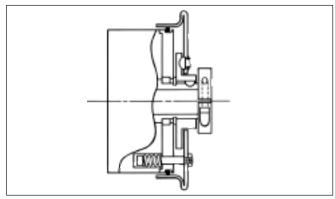


FIGURE 9 - SWITCH ACTUATING PLATE ASSEMBLY

After the overload condition has been corrected, the drive must be "jogged" until the drive pawl engages with the rotor. The clutch has now reindexed itself to its original position.

The fully automatic Model F includes, as standard, a limit switch actuating plate assembly. Upon overload, the rotor is released from its engaged position within the housing. The resulting rotation causes the cam plate, which is keyed to the rotor, to exert pressure on the lift-out buttons forcing them to move the actuating plate axially away from the clutch housing, (See Figure 9).

When the clutch re-engages, the actuating plate is automatically returned to its original position by the return spring's pressure on the return pins.

The actuating plate can only retract completely to its original position upon re-engagement of the drive pawl with the rotor.

LOCKING COLLAR MOUNTING

Three clutch models are available for mounting. Models FJ and FG incorporate a locking collar design which provides a positive clamp on the key and shaft. Model FR uses a standard setscrew mounting arrangement, (See Figure 10).

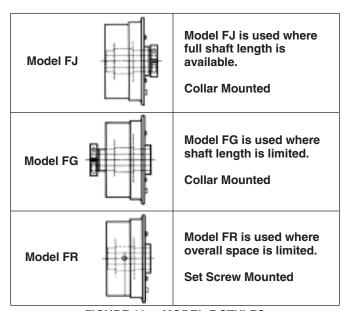


FIGURE 10 - MODEL F STYLES

FULLY AUTOMATIC MODEL F

TORQUE SELECTOR DIAL

The torque selector dial shown in Figure 11 is a standard feature on all Fully Automatic Model F Trig-O-Matic clutches. Each clutch is individually calibrated to specific torque values. The housing has two milled marks indicating minimum and maximum torque. In addition, these values are stamped on the housing adjacent to each mill mark. To adjust the torque, loosen the "lock screw", turn the torque adjusting screw (stamped #9) until it is flush with the milled depth and the red scribed lines match the required output position. Additional marks can be indicated upon request.

MAXIMUM TORQUE LIMIT STOP

A maximum torque limit stop is supplied to prevent clutch lockup. In conjunction with a torque selector dial, the maximum value indicated by the deepest milled mark can not be exceeded.

GREASE PACK FITTINGS

Grease pack and relief fittings are supplied countersunk into the clutch housing to pack the clutch cavity, preventing corrosion. This feature is especially suitable for outdoor or washdown service.

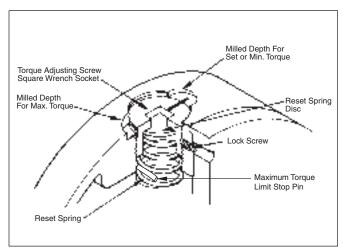
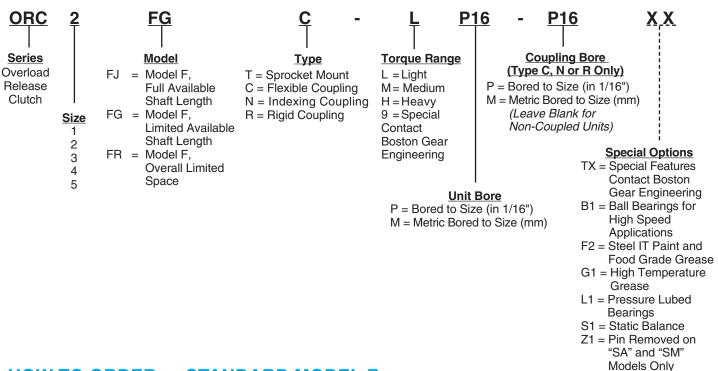
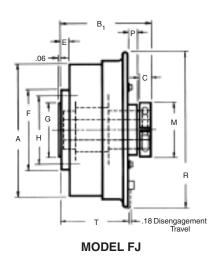



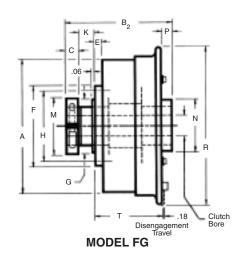
FIGURE 11

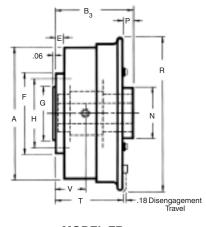
ORC MODEL F SERIES PART NUMBERING SYSTEM

HOW TO ORDER — STANDARD MODEL F

When ordering an ORC Series Trig-O-Matic Overload Clutch, please include code letters for series, size, model, type, torque range, unit bore and coupling bore (if applicable). Not all combinations are possible.


Example:


Required Size 2 Trig-O-Matic Overload Clutch, Model F automatic reset, limited available shaft length, flexible coupling, light torque range, with a one inch unit bore and a one inch coupling bore:



ORC SERIES MODEL FJ, FG, AND FR

TYPE T SPROCKET, SHEAVE, PULLEY MOUNTING

MODEL FR

ALL DIMENSIONS IN INCHES

Clutch Size	Α	Bı	B ₂	Вз	С	Е	F	G +.000/002	H Bolt Circle	K	М	N	Р	R	Т	٧	Weight (Lbs.)
1	4.50	3.72	4.49	3.20	.50	.37	2.87	1.875	2.375	0.78	1.87	1.56	.38	5.50	2.83	1.22	7
2	6.00	4.22	4.96	3.66	.56	.43	3.68	2.250	3.000	0.74	2.37	2.25	.38	7.50	3.28	1.47	14
3	8.00	5.46	6.38	4.66	.75	.50	4.87	3.250	4.125	0.97	3.25	3.00	.59	9.50	4.08	1.88	30
4	10.00	6.79	7.50	5.94	.87	.68	6.12	3.203	5.000	0.72	4.25	4.00	.82	11.50	5.12	2.60	66
5	12.00	7.76	9.32	6.70	.87	.81	7.50	4.125	6.250	1.75	5.00	5.25	.86	14.00	5.85	2.93	123

Sprockets, sheaves, pulleys, and gears can be mounted upon request. Refer to Page 27 for maximum sprocket sizes and mounting hole patterns.

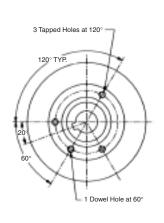
RATINGS

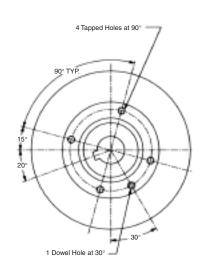
Clu	ıtch	Torque	e Range	(Lb. In.)	Max.	WR ²	
S	ize	L	M	Н	RPM	(LbIn.2)	
1	Min.	70	110	260	500	18	
'	Мах.	140	275	400	500	10	
2	Min.	100	200	400	500	65	
_	Max.	200	600	1,000	500	03	
3	Min.	200	800	1,200	500	238	
3	Max.	850	2,200	3,000	300	230	
4	Min.	600	1,200	2,850	500	815	
4	Max.	1,400	3,000	5,000	300	013	
5	Min.	1,600	2,500	4,000	500	2,170	
3	Мах.	3,000	6,000	10,000	500	۷,170	

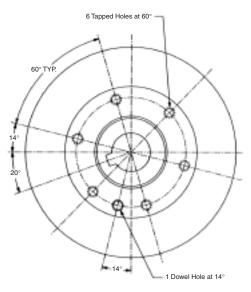
Clutches are shipped set for the minimum torque value of the selected range.

CLUTCH BORES

Clutch	В	ores (inc	h)
Size	Min.	Max. (1)	Max. (2)
1	0.5000	0.7500	_
2	0.6250	1.0000	1.1250
3	0.7500	1.6250	1.7500
4	1.1250	2.0000	2.2500
5	1.5000	2.6250	2.7500


Refer to Page 84 for a complete list of bore codes.


- (1) Square Key
- (2) Flat Key


Refer to Page 25 for ordering information.

ORC SERIES MODEL S AND F

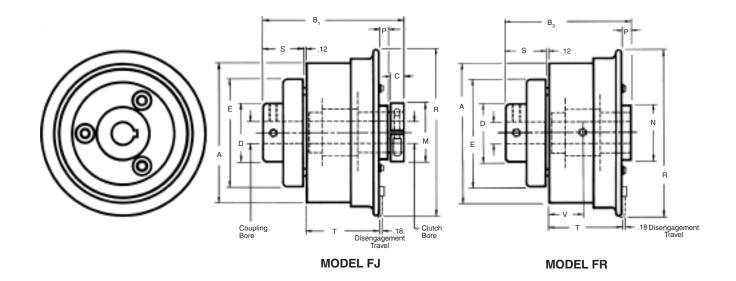
TYPE T MOUNTING HOLE PATTERNS

CLUTCH SIZES 1 AND 2

CLUTCH SIZES 3 AND 4

CLUTCH SIZES 5 AND 6

			Mountin	ng Holes		
Clutch Size	Qty.	Thread Size	Tap Depth	Bolt Circle	Pilot Dia. +.000 002	Dowel Size
1	3	1/4-20	.50	2.375	1.875	.25
2	3	5/16-18	.50	3.000	2.250	.31
3	4	3/8-16	.62	4.125	3.250	.37
4	4	1/2-13	.87	5.000	3.203	.50
5	6	5/8-11	1.00	6.250	4.125	.62
6	6	5/8-11	1.00	8.750	6.000	.62


MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE T CLUTCHES

		Standard Chain Size and Pitch										
Clutch	#25	#35	#40	#41	#50	#60	#80	#100	#120	#140	#160	
Size	1/4	3/8	1/2	1/2	5/8	3/4	1	1-1/4	1-1/2	1-3/4	2	
	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	
1	40	28	22	22	18							
2	54	36	28	28	22	19			Not Reco	mmended		
3		45	34	36	28	25	19					
4			42	45	36	30	23	19				
5	Consult Factory 42					36	30	22	19	17		
6	Consult ractory					48	36	30	24	21	19	

For smaller sprockets, consult Boston Gear Engineering at 704-688-7324.

ORC SERIES MODEL FJ AND FR

TYPE C FLEXIBLE COUPLING

ALL DIMENSIONS IN INCHES

Clutch Size	А	B ₁	Вз	С	D	Е	M	N	Р	R	S	T	٧	Angular Misalignment*	Max. Parallel Offset*	Weight (Lbs.)
1	4.50	5.41	4.89	.50	2.00	4.25	1.87	1.56	.38	5.50	1.50	2.89	1.28	< 1°	.012	10
2	6.00	6.15	5.59	.56	2.56	5.25	2.37	2.25	.38	7.50	1.75	3.34	1.53	< 1°	.015	20
3	8.00	7.89	7.09	.75	2.50	5.87	3.25	3.00	.59	9.50	2.25	4.14	1.93	< 1°	.016	42
4	10.00	10.09	9.23	.87	4.87	9.12	4.25	4.00	.82	11.50	3.12	5.18	2.66	< 1°	.027	103
5	12.00	11.57	10.51	.87	5.68	10.50	5.00	5.25	.86	14.00	3.62	5.91	3.00	< 1°	.031	180

^{*}Parallel offset and angular misalignment proportionately reduced if both are present.

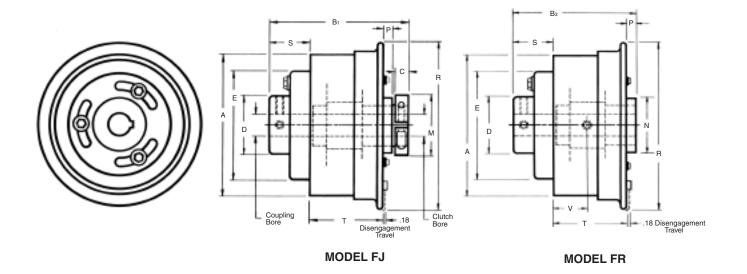
RATINGS

Clu	ıtch	Torque	e Range	(Lb. In.)	Max.	WR ²	
S	ize	L	M	Н	RPM	(LbIn.2)	
1	Min.	70	110	260	500	26	
'	Max.	140	275	400	500	20	
2	Min.	100	200	400	500	89	
_	Max.	200	600	1,000	300	09	
3	Min.	200	800	1,200	500	327	
3	Max.	850	2,200	3,000	300	321	
4	Min.	600	1,200	2,850	500	1,270	
7	Max.	1,400	3,000	5,000	300	1,270	
5	Min.	1,600	2,500	4,000	500	3,160	
3	Max.	3,000	6,000	10,000	300	5,100	

Clutches are shipped set for the minimum torque value of the selected range.

CLUTCH AND COUPLING BORES

Clutch	T	Е	Bores (inch)
Size	Type	Min.	Max. (1)	Max. (2)
1	Clutch	0.5000	0.7500	_
1	Coupling	0.5000	1.5000	1.5625
2	Clutch	0.6250	1.0000	1.1250
	Coupling	0.6250	1.8125	1.9375
3	Clutch	0.7500	1.6250	1.7500
3	Coupling	0.7500	1.7500	1.8125
4	Clutch	1.1250	2.0000	2.2500
4	Coupling	1.1250	3.6875	3.8125
5	Clutch	1.5000	2.6250	2.7500
3	Coupling	1.5000	4.2500	4.5000


Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

Refer to Page 25 for ordering information.

ORC SERIES MODEL FJ AND FR

TYPE N INDEXING COUPLING

ALL DIMENSIONS IN INCHES

Clutch Size	А	Bı	В	С	D	Е	М	N	Р	R	S	Т	V	Weight (Lbs.)
1	4.50	5.28	4.76	.50	2.00	4.25	1.87	1.56	.38	5.50	1.50	2.89	1.28	10
2	6.00	5.96	5.41	.56	2.56	5.25	2.37	2.25	.38	7.50	1.69	3.34	1.53	20
3	8.00	7.77	6.97	.75	3.00	7.00	3.25	3.00	.59	9.50	2.25	4.14	1.93	42
4	10.00	9.97	9.12	.87	4.87	9.12	4.25	4.00	.82	11.50	3.12	5.18	2.66	103
5	12.00	11.44	10.38	.87	5.68	10.50	5.00	5.25	.86	14.00	3.62	5.91	3.00	180

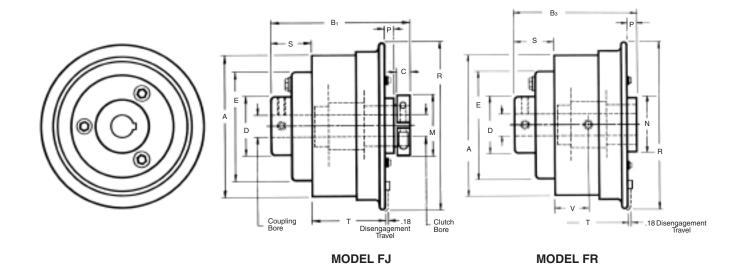
RATINGS

Clutch		Torque	e Range	(Lb. In.)	Max.	WR ²	
Si	ize	L	М	Н	RPM	(LbIn.2)	
1	Min.	70	110	260	500	26	
'	Max.	140	275	400	500	20	
2	Min.	100	200	400	500	89	
	Max.	200	600	1,000	300	03	
3	Min.	200	800	1,200	500	327	
J	Max.	850	2,200	3,000	300	321	
4	Min.	600	1,200	2,850	500	1,270	
7	Max.	1,400	3,000	5,000	300	1,270	
5	Min.	1,600	2,500	4,000	500	3,160	
5	Max.	3,000	6,000	10,000	500	3,100	

Clutches are shipped set for the minimum torque value of the selected range.

CLUTCH AND COUPLING BORES

Clutch	Tuna	Bores (inch)				
Size	Type	Min.	Max. (1)	Max. (2)		
1	Clutch	0.5000	0.7500	_		
'	Coupling	0.5000	1.5000	1.5625		
2	Clutch	0.6250	1.0000	1.1250		
	Coupling	0.6250	1.8125	1.9375		
3	Clutch	0.7500	1.6250	1.7500		
3	Coupling	0.7500	1.7500	1.8125		
4	Clutch	1.1250	2.0000	2.2500		
4	Coupling	1.1250	3.6875	3.8125		
5	Clutch	1.5000	2.6250	2.7500		
J	Coupling	1.5000	4.2500	4.5000		


Refer to Page 84 for a complete list of bore codes.

- (1) Square Key (2) Flat Key

Refer to Page 25 for ordering information.

ORC SERIES MODEL FJ AND FR

TYPE R RIGID COUPLING

ALL DIMENSIONS IN INCHES

Clutch Size	А	Bı	В₃	С	D	Е	М	N	Р	R	S	Т	V	Weight (Lbs.)
1	4.50	5.28	4.76	.50	2.00	4.25	1.87	1.56	.38	5.50	1.50	2.89	1.28	10
2	6.00	5.96	5.41	.56	2.56	5.25	2.37	2.25	.38	7.50	1.69	3.34	1.53	20
3	8.00	7.77	6.97	.75	3.00	7.00	3.25	3.00	.59	9.50	2.25	4.14	1.93	42
4	10.00	9.97	9.12	.87	4.87	9.12	4.25	4.00	.82	11.50	3.12	5.18	2.66	103
5	12.00	11.44	10.38	.87	5.68	10.50	5.00	5.25	.86	14.00	3.62	5.91	3.00	180

RATINGS

Clutch		Torque	e Range	(Lb. In.)	Max.	WR ²
S	ize	L	М	Н	RPM	(LbIn.2)
1	Min.	70	110	260	500	26
'	Max.	140	275	400	500	20
2	Min.	100	200	400	500	89
_	Max.	200	600	1,000	300	09
3	Min.	200	800	1,200	500	327
5	Max.	850	2,200	3,000	300	321
4	Min.	600	1,200	2,850	500	1,270
4	Max.	1,400	3,000	5,000	300	1,270
5	Min.	1,600	2,500	4,000	500	3,160
5	Max.	3,000	6,000	10,000	300	3,100

Clutches are shipped set for the minimum torque value of the selected range.

CLUTCH AND COUPLING BORES

Clutch	Tuna	Е	Bores (inch)				
Size	Type	Min.	Max. (1)	Max. (2)			
1	Clutch	0.5000	0.7500	_			
'	Coupling	0.5000	1.5000	1.5625			
2	Clutch	0.6250	1.0000	1.1250			
	Coupling	0.6250	1.8125	1.9375			
3	Clutch	0.7500	1.6250	1.7500			
3	Coupling	0.7500	1.7500	1.8125			
4	Clutch	1.1250	2.0000	2.2500			
4	Coupling	1.1250	3.6875	3.8125			
5	Clutch	1.5000	2.6250	2.7500			
J	Coupling	1.5000	4.2500	4.5000			

Refer to Page 84 for a complete list of bore codes.

- (1) Square Key (2) Flat Key

Refer to Page 25 for ordering information.

ORC SERIES FULLY AUTOMATIC MODEL F OPTIONS

ONE-DIRECTION OPTION

For applications with oscillating torque loads, a one-directional clutch is available to prevent needless disengagement of the clutch due to back-loading conditions.

The unique rotor/drive pawl configuration permits the clutch to disengage in the normal running direction in the event of an overload. It back stops any load in the opposite direction and is virtually a solid connection when driven in the opposite direction (see Figure 12).

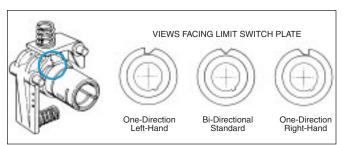


FIGURE 12

To select either the RIGHT-HAND or LEFT-HAND configuration:

- 1. Determine the normal direction of rotation facing either
 - a. the limit switch plate, or
 - b. the housing
- 2. Determine whether the input is driving through either
 - a. the rotor, or
 - b. the housing
- 3. With this information, select the correct configuration from the chart below.

Clockwise Running Rotation					
Facing Limit	Switch Plate				
Rotor Driving (input)	Housing Driving (input)				
Right-Hand Clutch	Left-Hand Clutch				
Clockwise Rur	nning Rotation				
Facing I	Housing				
Rotor Driving (input)	Housing Driving (input)				
Left-Hand Clutch	Right-Hand Clutch				
Counter Clockwise	Running Rotation				
Facing Limit	Switch Plate				
Rotor Driving (input)	Housing Driving (input)				
Left-Hand Clutch	Right-Hand Clutch				
Counter Clockwise Running Rotation					
Facing Housing					
Rotor Driving (input)	Housing Driving (input)				
Right-Hand Clutch	Left-Hand Clutch				

CUSTOM VARIATIONS

Sprockets, sheaves, pulleys and gears can be supplied and mounted to the clutch.

See page 23 or contact Boston Gear Engineering at 704-688-7324 for additional information.

Bores and keyways (i.e. metric, non-standard).

SPECIAL FINISHES

All clutches are supplied with a standard lacquer finish. Special coatings, finishes, or paints are also available upon request. Adding suffix - F2 to the model number will provide steel IT paint and food grade grease.

TYPICAL LIMIT SWITCH LAYOUT

The layout in Figure 13 uses a single limit switch to detect an overload condition. The switch should be able to operate within the travel of the limit switch plate. Upon overload the limit switch plate will move to actuate the limit switch and shut down the drive.

The switch should be wired in parallel with a jog circuit so that the drive can be indexed for re-engagement. After the clutch has been re-engaged, the limit switch will be reset and the drive can be restarted.

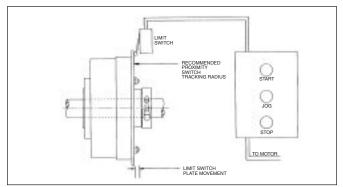


FIGURE 13

The limit switch actuating plate supplied with the Model F Trig-O-Matic Overload Clutch is furnished with a mild steel plate suitable for use with a proximity sensor.

LIMIT SWITCH

Clutch Size	Movement (Inch)	Tracking Radius (Inch)
1	.18	2.38
2	.18	3.25
3	.18	4.18
4	.18	5.25
5	.18	6.25

TORQUE LIMITER APPLICATION DATA

FAX TO 704-688-7403

Please select your product intent below and provide as much application information as possible.

1. Application: New Existing - Replacement Model #	6. Shut Down Method: Prox Plate Pin Style (ORC only)
2. Power transmission requirements at clutch location:	Use the space below to note any relevant application data or to detail your question.
☐ Limiting Torque Level	
3. Type: Mechanical Pneumatic	
4. Type:	
☐ Fully Automatic ☐ Manual ☐ Carri Automatic (CDC model ank)	
☐ Semi Automatic (ORC model only)	
5. Method of Torque Transmission:	
Flexible Coupling	
☐ Rigid Coupling☐ Sprocket Mount	
Other:	

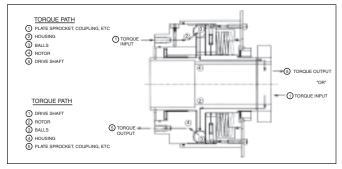
H1600 MECHANICAL OVERLOAD CLUTCHES

HOR SERIES

SECTION CONTENTS

FEATURES	34
OPERATING PRINCIPLES	34
SELECTION	35
HOW TO ORDER	35
RATINGS AND DIMENSIONS	36
MOUNTING HOLE PATTERNS	40
GENERAL INFORMATION	41

H1600 OVERLOAD CLUTCHES HOR SERIES

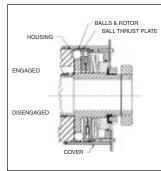

FEATURES

- Bi-directional operation
- Single position indexing
- Automatic reset
- Convenient torque adjustment
- Maximum torque limit stop
- Limit switch actuating mechanism
- Clamp collar for secure mounting
- Hardened components for long life
- Electroless nickel finish and stainless steel hardware for superior corrosion resistance
- Sealed from environmental contamination
- Interchanges POR Series

OPERATING PRINCIPLES

The HOR Series H1600 is an automatic reset ball detent style overload release clutch. It has been designed to provide accurate and dependable torque disconnect protection for mechanical power transmission equipment. Torque is transmitted through the clutch in one of two paths. Refer to Figure 1.

FIGURE 1



Torque transmission between the balls and housing is the key to the disengagement of the clutch. The balls are forced into the pockets of the housing by an axial load generated by compressing a spring pack. This axial load determines the torque capacity of the clutch. Increasing or decreasing the spring compression or changing spring packs provides a means for multiple torque adjustments. When a torque overload condition occurs, the balls roll out of the pockets and freewheel similar to a ball thrust bearing. This rolling action increases the efficiency in which the clutch operates and reduces any fluctuation of torque setting due to frictional changes. Refer to Figure 2.

The movement of the cover during disengagement can be used to trip a limit switch and signal a torque overload condition. The drive should be shut down immediately and the source of the

overload determined and cleared. The drive can then be restarted. The automatic reset feature of the clutch will allow it to reengage without manual assistance and the clutch will once again be ready to provide accurate and dependable torque disconnect protection for your equipment.

TORQUE ADJUSTMENT

The HOR Series H1600 Series Clutch can be factory set to

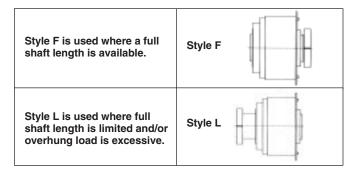
FIGURE 2

your requirements. The torque setting of the clutch can easily be adjusted in the field to suit your needs. Two degrees of adjustment are available and described below.

Fine Adjustment: Lift the bearing lock washer tabs which secure the nut in position. Use a spanner wrench to adjust the bearing nut to your desired torque setting. Clockwise rotation will increase the torque and conversely, counterclockwise rotation will decrease the torque. Once the desired torque setting is made, fold the tab of the washer over the slot on the bearing nut to secure it in position at the new torque release level.

Coarse Adjustment: Large variations in torque setting can be accomplished by replacing the disc spring pack with that of a higher or lower spring rate. This change will effectively alter the load which can be applied to the balls.

H1600 OVERLOAD CLUTCHES


SELECTION

- Determine the overload release torque by one of these methods:
 - a. Use the torque formula with horsepower and RPM specific to the selected clutch location. A service factor may be required for high inertia starts, reversing or peak load conditions, (refer to Page 86 for service factor information. For average applications, a service factor "SF" of 1.25 is recommended):

Torque (Lb. In.) =
$$\frac{HP \times 63025}{RPM}$$
 X SF

- b. Determine the "weak link" in the drive train, (i.e., chain, reducer, belt or shaft). Select an overload release torque below the "weak link's" maximum torque rating.
- Physically measure the drive torque with a torque wrench and size accordingly.
- 2. Determine the bore size(s) and keyway(s):
 - a. Shaft size at the clutch location determines clutch bore.
 - b. Shaft size at the coupling location determines coupling bore (if applicable).
- 3. Choose the appropriate Style based upon the drive layout and available space (See Figure 3).
- 4. Refer to the Basic Selection Chart for the appropriate clutch size.
- 5. Refer to Part Numbering System to complete selection.

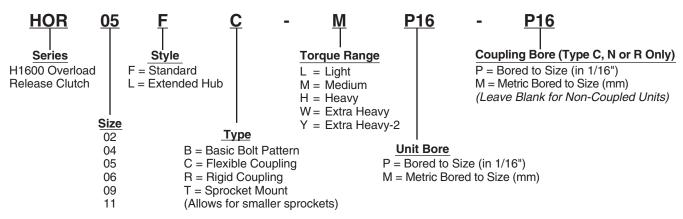
FIGURE 3

BASIC SELECTION CHART

Clutch Size	Max. Bore* (In.)	Torque Code	Torque Range (Lb. In.)
02	F - 0.5625 L - 0.6875	L M H W	25-60 50-125 75-175 100-250
04	F - 1.1250 L - 1.2500	L M H W	175-550 250-850 350-1,300 600-2,000
05	F - 1.6250 L - 1.8125	L M H W Y	350-1,200 500-1,800 750-2,600 1,000-4,000 1,650-6,000
06	2.1250	L M H W Y	600-1,900 750-2,700 1,000-3,800 1,500-5,600 2,800-10,000
09	3.1250	L M H W	2,250-7,500 3,000-10,500 4,250-15,000 6,250-22,500
11	3.6250	L M H	6,000-22,000 9,000-32,000 12,000-50,000

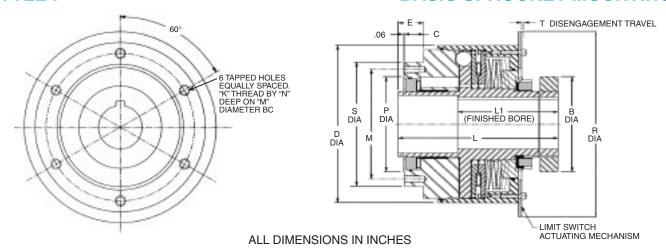
^{*}Larger bores may require flat keys (supplied with unit).

HOW TO ORDER


When ordering a HOR Series H1600 Overload Clutch, please include code letters/numbers for series, size, style, type, torque range, unit bore and coupling bore (if applicable).

Example:

Required size, 05 HOR Series H1600 Overload Clutch, standard style, flexible coupling, medium torque range, and a one inch bore on both the unit and coupling:



HOR SERIES PART NUMBERING SYSTEM

HOR SERIES STYLE F

TYPE B BASIC SPROCKET MOUNTING

Clutch	В	_	D	г	ı	1.4	Р	D	C	т	N	Mounting Holes	3
Size	D	C	U		L	L1	+.000/002	R	S	ı	N	K	M
02	1.75	0.29	2.81	0.45	3.52	2.00	1.781	5.81	2.63	.060	0.38	#8-32	2.125
04	2.38	0.35	4.25	0.56	4.79	3.00	2.688	7.25	3.63	.078	0.50	#10-24	3.062
05	3.50	0.43	5.88	0.70	6.20	3.88	3.625	8.88	5.00	.110	0.75	5/16-18	4.250
06	4.25	0.50	7.12	0.80	6.73	4.38	4.000	10.12	5.56	.128	0.81	3/8-16	4.750
09	5.75	1.03	9.50	1.40	9.00	5.50	5.750	12.50	7.56	.165	0.88	7/16-14	6.625
11	6.25	1.28	11.62	1.65	10.66	6.88	6.500	14.62	9.00	.183	1.00	5/8-11	7.750

RATINGS

Clutch	To	rque Ra	nge (Lb. lı	า.)	Max.	WR ^{2*}	Weight*
Size	Code	Min.	MRT	Max.	RPM	(Lbln. ²)	(Lbs.)
	L	25	45	60			
02	M	50	100	125	500	3.4	3.9
02	Н	75	125	175	500	3.4	3.9
	W	100	200	250			
	L	175	400	550			
0.4	M	250	600	850	F00	00.0	11.0
04	Н	350	850	1,300	500	22.3	11.0
	W	600	1,400	2,000			
	L	350	900	1,200			
	М	500	1,300	1,800			
05	Н	750	1,800	2,600	500	129	30.2
	W	1,000	2,750	4,000			
	Υ	1,650	4,000	6,000			
	L	600	1,400	1,900			
	M	750	1,900	2,700			
06	Н	1,000	2,600	3,800	500	266	43.3
	W	1,500	3,900	5,600			
	Υ	2,800	7,000	10,000			
	L	2,250	5,500	7,500			
00	М	3,000	7,500	10,500	E00	1 155	104
09	Н	4,250	10,000	15,000	500	1,155	104
	W	6,250	15,000	22,500			
	L	6,000	15,000	22,000			
11	М	9,000	20,000	32,000	500	2,995	171
	Н	12,000	30,000	50,000			

CLUTCH BORES

Clutch	Bores	(inch)
Size	Max. (1)	Max. (2)
02	0.5000	0.5625
04	1.0000	1.1250
05	1.5000	1.6250
06	1.9375	2.1250
09	2.8750	3.1250
11	3.1875	3.5000

Refer to Page 84 for a complete list of bore codes.

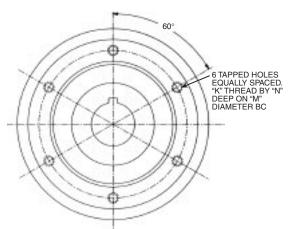
- (1) Square Key
- (2) Flat Key

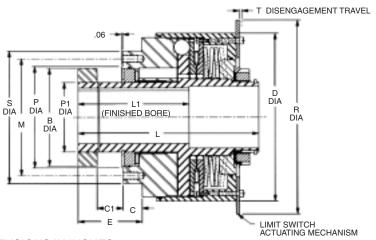
MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE B CLUTCHES

			Sta	ndard (Chain S	Size aı	nd Pitc	h
Clutch	Type	#25	#35	#40	#50	#60	#80	#100
Size	Турс	1/4	3/8	1/2	5/8	3/4	1	1-1/4
		Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch
02	В	39	27	22	_	_	_	_
04	В	51	35	28	23	_	_	_
05	В	69	47	36	30	26	_	_
06	В	76	52	40	33	28	_	_
09	В	101	68	52	43	36	28	24
11	В	119	80	61	50	43	33	27

MRT is the Minimum Recommended Torque setting for those applications which require a minimal degree of backlash.

Clutches are shipped set for the minimum torque value of the selected range.


Refer to Page 35 for ordering information.


^{*}Weight and WR2 estimated with maximum bores.

H1600 OVERLOAD CLUTCHES

HOR SERIES STYLE L EXTENDED HUB

TYPE B BASIC SPROCKET MOUNTING

ALL DIMENSIONS IN INCHES

Clutch	В	_	C1	D	F		1.4	Р	Р	1	R	S	_	N	lounting Ho	oles
Size	D	C	C1	U		L	LI	+.000/002	Min.	Max.	n	3	ı	N	K	М
02	1.75	0.29	1.25	2.81	2.04	4.63	3.25	1.781	0.9843	0.9847	5.81	2.63	.060	0.38	#8-32	2.125
04	2.38	0.35	1.44	4.25	2.35	6.06	3.88	2.688	1.5728	1.5738	7.25	3.63	.078	0.50	#10-24	3.062
05	3.50	0.43	2.06	5.88	3.24	8.18	5.25	3.625	2.3623	2.3628	8.88	5.00	.110	0.75	5/16-18	4.250
06	4.25	0.50	3.62	7.12	4.87	10.25	6.88	4.000	2.7560	2.7566	10.12	5.56	.128	0.81	3/8-16	4.750
09	5.75	1.03	4.25	9.50	6.28	13.23	9.00	5.750	3.9350	3.9370	12.50	7.56	.165	0.88	7/16-14	6.625
11	6.50	1.28	4.50	11.62	7.16	15.01	10.00	6.500	4.7220	4.7240	14.62	9.00	.183	1.00	5/8-11	7.750

RATINGS

Clutch	To	orque Rai	nge (Lb. lı	า.)	Max.	WR ² *	Weight*	
Size	Code	Min.	MRT	Max.	RPM	(Lbln. ²)	(Lbs.)	
	L	25	45	60				
02	M	50	100	125	500	3.5	4.0	
02	Н	75	125	175		3.3	4.0	
	W	100	200	250				
	L	175	400	550				
0.4	M	250	600	850	E00	00.4	11 5	
04	Н	350	850	1,300	500	22.4	11.5	
	W	600	1,400	2,000				
	L	350	900	1,200				
	M	500	1,300	1,800				
05	Н	750	1,800	2,600	500	130	31.7	
	W	1,000	2,750	4,000				
	Υ	1,650	4,000	6,000				
	L	600	1,400	1,900				
	M	750	1,900	2,700				
06	Н	1,000	2,600	3,800	500	270	47.0	
	W	1,500	3,900	5,600				
	Υ	2,800	7,000	10,000				
	L	2,250	5,500	7,500				
00	M	3,000	7,500	10,500	500	4 400	440	
09	Н	4,250	10,000	15,000	500	1,180	112	
	W	6,250	15,000	22,500				
	L	6,000	15,000	22,000				
11	M	9,000	20,000	32,000	500	3,040	182	
	Н	12,000	30,000	50,000				

CLUTCH BORES

Clutch	Bores	(inch)
Size	Max. (1)	Max. (2)
02	0.6250	0.6875
04	1.1250	1.2500
05	1.7500	1.8125
06	1.9375	2.1250
09	2.8750	3.1250
11	3.2500	3.6250

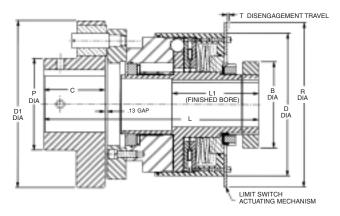
Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE B CLUTCHES

			Sta	ndard (Chain S	Size aı	nd Pitc	h
Clutch Size	Туре	#25	#35	#40	#50	#60	#80	#100
Size	Type	1/4	3/8	1/2	5/8	3/4	1	1-1/4
		Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch
02	В	39	27	22			_	_
04	В	51	35	28	23		_	_
05	В	69	47	36	30	26	_	_
06	В	76	52	40	33	28	_	_
09	В	101	68	52	43	36	28	24
11	В	119	80	61	50	43	33	27

MRT is the Minimum Recommended Torque setting for those applications which require a minimal degree of backlash.


Clutches are shipped set for the minimum torque value of the selected range.

Refer to Page 35 for ordering information.

^{*}Weight and WR2 estimated with maximum bores.

HOR SERIES STYLE F

TYPE C FLEXIBLE COUPLING

ALL DIMENSIONS IN INCHES

Clutch	В	С	D	D1	L	L1	Р	R	Т	Max. All Misalig	owable jnment*
Size										Parallel*	Angular*
02	1.75	1.25	2.81	3.94	5.50	2.00	2.50	5.81	.060	.012	1°
04	2.38	1.25	4.25	5.13	6.64	3.00	3.25	7.25	.078	.016	1°
05	3.50	2.38	5.88	6.88	9.94	3.88	3.88	8.88	.110	.027	1°
06	4.25	2.88	7.12	8.13	11.25	4.38	4.25	10.12	.128	.045	1°
09	5.75	4.00	9.50	11.13	14.52	5.50	6.12	12.50	.165	.045	1°
11	6.25	4.50	11.62	14.00	16.67	6.88	7.50	14.62	.183	.045	1°

^{*}Parallel and Angular misalignment are proportionally reduced when both are present.

RATINGS

Clutch	То	rque Ra	nge (Lb. lı	า.)	Max.	WR ^{2*}	Weight*	
Size	Code	Min.	MRT	Max.	RPM	(LbIn. ²)	(Lbs.)	
	L	25	45	60				
00	М	50	100	125	E00	10.0	0.0	
02	Н	75	125	175	500	10.0	8.0	
	W	100	200	250				
	L	175	400	550				
04	М	250	600	850	500	44.0	18.0	
04	Н	350	850	1,300	500	44.0	10.0	
	W	600	1,400	2,000				
	L	350	900	1,200				
	М	500	1,300	1,800				
05	Н	750	1,800	2,600	500	241	49.0	
	W	1,000	2,750	4,000				
	Υ	1,650	4,000	6,000				
	L	600	1,400	1,900				
	М	750	1,900	2,700				
06	Н	1,000	2,600	3,800	500	550	82.0	
	W	1,500	3,900	5,600				
	Υ	2,800	7,000	10,000				
	L	2,250	5,500	7,500				
09	М	3,000	7,500	10,500	500	2 225	180	
09	Н	4,250	10,000	15,000	500	2,325	100	
	W	6,250	15,000	22,500				
	L	6,000	15,000	22,000				
11	М	9,000	20,000	32,000	500	6,215	305	
	Н	12,000	30,000	50,000				

^{*}Weight and WR2 estimated with maximum bores.

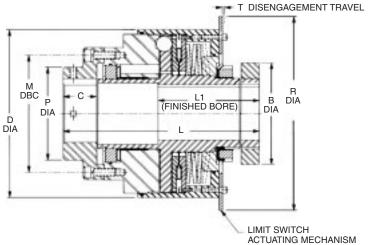
MRT is the Minimum Recommended Torque setting for those applications which require a minimal degree of backlash.

Clutches are shipped set for the minimum torque value of the selected range.

Refer to Page 35 for ordering information.

For application assistance call 704-688-7324 or visit us at www.centricclutch.com

CLUTCH AND COUPLING BORES


Clutch	T	Во	res
Size	Type	Max. (1)	Max. (2)
02	Clutch	0.5000	0.5625
02	Coupling	1.1875	_
04	Clutch	1.0000	1.1250
04	Coupling	1.8750	_
05	Clutch	1.5000	1.6250
05	Coupling	2.3125	2.3750
06	Clutch	1.9375	2.1250
00	Coupling	2.6250	2.7500
09	Clutch	2.8750	3.1250
09	Coupling	4.0000	4.1250
11	Clutch	3.1875	3.5000
11	Coupling	4.6250	5.0000

Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

HOR SERIES STYLE F

TYPE R RIGID COUPLING

ALL DIMENSIONS IN INCHES

Clutch Size	В	С	D	L	L1	М	Р	R	Т
02	1.75	0.75	2.81	4.36	2.00	2.125	1.38	5.81	.060
04	2.38	1.62	4.25	6.51	3.00	3.062	2.50	7.25	.078
05	3.50	2.13	5.88	8.43	3.88	4.250	3.31	8.88	.110
06	4.25	2.20	7.12	9.02	4.38	4.750	3.50	10.12	.128
09	5.75	3.34	9.50	12.43	5.50	6.625	5.25	12.50	.165
11	6.25	3.96	11.62	14.77	6.88	7.750	6.00	14.62	.183

RATINGS

Clutch	To	orque Ra	nge (Lb. I	n.)	Max.	WR ^{2*}	Weight*	
Size	Code	Min.	MRT	Max.	RPM	(Lbln.²)	(Lbs.)	
	L	25	45	60				
00	M	50	100	125	F00	4 4	4.7	
02	Н	75	125	175	500	4.1	4.7	
	W	100	200	250				
	L	175	400	550				
0.4	M	250	600	850	F00	26.3	10.0	
04	Н	350	850	1,300	500		13.3	
	W	600	1,400	2,000				
	L	350	900	1,200				
	M	500	1,300	1,800				
05	Н	750	1,800	2,600	500	146	35.5	
	W	1,000	2,750	4,000				
	Υ	1,650	4,000	6,000				
	L	600	1,400	1,900		296		
	M	750	1,900	2,700				
06	Н	1,000	2,600	3,800	500		50.9	
	W	1,500	3,900	5,600				
	Υ	2,800	7,000	10,000				
	L	2,250	5,500	7,500				
00	M	3,000	7,500	10,500	F00	1 005	104	
09	Н	4,250	10,000	15,000	500	1,295	124	
	W	6,250	15,000	22,500				
	L	6,000	15,000	22,000				
11	M	9,000	20,000	32,000	500	3,290	200	
	Н	12,000	30,000	50,000				

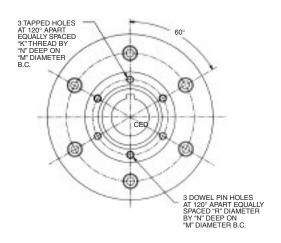
^{*}Weight and WR2 estimated with maximum bores.

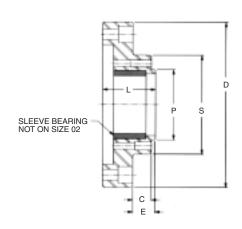
MRT is the Minimum Recommended Torque setting for those applications which require a minimal degree of backlash.

Clutches are shipped set for the minimum torque value of the selected range. Refer to Page 35 for ordering information.

For application assistance call 704-688-7324 or visit us at www.centricclutch.com

CLUTCH AND COUPLING BORES


Clutch	Type	Во	res		
Size	Type	Max. (1)	Max. (2)		
02	Clutch	0.5000	0.5625		
02	Coupling	0.7500	_		
04	Clutch	1.0000	1.1250		
04	Coupling	1.6250	1.6875		
05	Clutch	1.5000	1.6250		
05	Coupling	2.1250	2.2500		
06	Clutch	1.9375	2.1250		
00	Coupling	2.2500	2.3125		
09	Clutch	2.8750	3.1250		
09	Coupling	3.3750	3.5000		
11	Clutch	3.1875	3.5000		
11	Coupling	4.0000	4.1250		


Refer to Page 84 for a complete list of bore codes.

⁽¹⁾ Square Key (2) Flat Key

HOR SERIES TYPE T ADAPTER

TYPE T SPROCKET, PULLEY, SHEAVE OR GEAR MOUNT

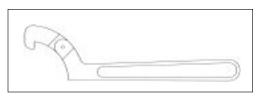
ALL DIMENSIONS IN INCHES

Clutch Size	С	D	Е	K	L	М	N	P +.000/002	R	S	WR² (Lbln.²)	Weight (Lbs.)
02	0.28	2.63	0.40	#8-32	0.71	1.422	.38	1.094	_	1.75	0.5	0.5
04	0.34	3.63	0.63	#8-32	1.02	2.250	.38	1.922	3/16	2.58	2.0	1.0
05	0.47	5.00	0.59	1/4-20	1.26	3.219	.50	2.750	1/4	3.66	12	3.0
06	0.69	5.56	0.81	1/4-20	1.55	3.406	.50	2.938	1/4	3.90	25	5.4
09	0.88	7.56	1.00	3/8-16	2.00	5.094	.75	4.344	3/8	5.84	93	11
11	1.02	9.00	1.14	3/8-16	2.32	5.938	.75	5.188	1/2	6.69	241	19

Mounting bolts must be minimum 160,000 PSI tensile, Rc 36-43 Dowel pins must be minimum 150,000 PSI shear, Rc 50-58 core hardness

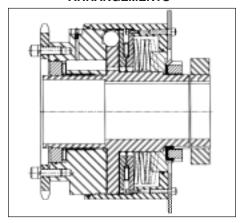
MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE T CLUTCHES TYPE T CLUTCHES ALLOW FOR THE USE OF SMALLER SPROCKETS

		Standard Chain Size and Pitch									
Clutch Size	Type	#25 1/4 Pitch	#35 3/8 Pitch	#40 1/2 Pitch	#50 5/8 Pitch	#60 3/4 Pitch	#80 1 Pitch	#100 1-1/4 Pitch			
02	Т	27	19	15	—	—	—	—			
04	Ť	37	26	20	17	_	_	_			
05	Т	50	35	27	23	19	_	_			
06	Т	54	37	29	24	20	16	14			
09	Т	79	54	41	34	29	23	19			
11	T	90	61	47	38	32	25	21			

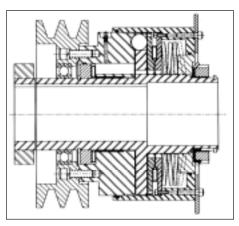

The Type T adapter may be ordered separately or factory mounted to the HOR Series Clutches shown on Pages 36 and 37, by specifying Type T.

GENERAL INFORMATION

TORQUE ADJUSTMENT WRENCH


Standard bearing nuts are used to adjust the spring load which controls the release torque of the clutch. These nuts are slotted and can easily be turned using a common, commercially available hook style spanner wrench. Refer to the table below for wrenches which are compatible with Boston Gear's torque overload release clutches.

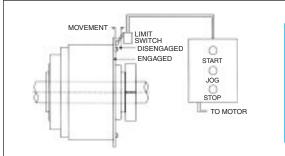
TORQUE ADJUSTMENT WRENCH



		Wrench Pa	art Number		Specifications (Inches)			
Clutch Size	Armstrong Tool Co.	McMaster- Carr Supply Co.	Williams Tool Co.	Snap-On Tool Co.	Diameter Range	Hook Thick.	Hook Depth	Length
02	34-301	5471A11	471	AHS300	.75 to 2.00	.34	.13	6.38
02, 04	34-304	5471A12	472	AHS301	1.25 to 3.00	.41	.16	8.13
04, 05, 06	34-307	5471A13	474	AHS304	2.00 to 4.75	.47	.19	11.38
09, 11	34-310	5471A14	474A	AHS307	4.50 to 6.25	.47	.25	12.13
11	34-313	5471A23	474B	_	6.12 to 8.75	.47	.31	13.75

FIGURE 5 SUGGESTED MOUNTING ARRANGEMENTS

TYPE B, STYLE F WITH SPROCKET MOUNTED



TYPE B, STYLE L
WITH SHEAVE MOUNTED

TORQUE OVERLOAD DETECTION

The HOR Series H1600 Clutch is an automatic reset device designed for use when a fully disconnecting type is not desirable either because it is inaccessible and cannot be manually reset or because frequent resetting is not feasible. Because of this feature, it is important that the drive be shut down immediately upon a torque overload condition to prevent possible damage to the clutch caused by long-term reengaging and disengaging. Figure 4 utilizes a single limit switch to detect an overload condition. The switch should be able to operate within the disengagement travel of the clutch. Upon an overload, the cover of the clutch will move to actuate the limit switch and shut down the drive. The switch should be wired in parallel with a jog button so the drive can be indexed and permit the clutch to reengage at a safe speed. Once the clutch has been reengaged the limit switch will be reset and the drive can be restarted.

FIGURE 4
LIMIT SWITCH LAYOUT

Disengagement Travel							
Clutch Size	Movement (In.)						
02	.060						
04	.078						
05	.110						
06	.128						
09	.165						
11	.183						

H1600 OVERLOAD CLUTCHES

TORQUE LIMITER APPLICATION DATA

FAX TO 704-688-7403

Please select your product intent below and provide as much application information as possible.

1. Application: New Existing - Replacement Model #	6. Shut Down Method: Prox Plate Pin Style (ORC only)
2. Power transmission requirements at clutch location: Horsepower RPM	Use the space below to note any relevant application data or to detail your question.
☐ Limiting Torque Level	
3. Type:	
☐ Mechanical	
☐ Pneumatic	
4. Type:	
Fully Automatic	
☐ Manual	
☐ Semi Automatic (ORC model only)	
5. Method of Torque Transmission:	
Flexible Coupling	
☐ Rigid Coupling	
☐ Sprocket Mount	
☐ Other :	

Designed for the water and wastewater industry

SECTION CONTENTS

44
44
45
45
46
49
49

H1900 OVERLOAD CLUTCHES WASTEWATER TREATMENT INDUSTRY WOR SERIES

FEATURES:

- Automatic or manual reset
- Large bore capacity
- Through shaft or end shaft mounting
- Accurate torque release
- Stainless steel enclosure
- Electroless nickel plated
- Adaptable for all drives
- Operating parts are hardened for long life

The WOR Series H1900 is a mechanical ball detent overload release clutch. It has been designed to provide accurate and dependable torque overload protection for mechanical water and wastewater treatment equipment.

Torque is transmitted between the balls and the detents of the rotor in the following manner:

The chrome alloy balls are forced into the detents of the 50 Rc hardened rotor by an axial load generated by compressing a spring pack. This axial load is what determines the torque capacity of the clutch. Increasing or decreasing the spring compression or changing spring packs provides a means for multiple torque adjustments. When a torque overload condition occurs, the balls roll out of the rotor detents. This rolling action reduces any fluctuation in torque due to frictional changes (See Figure 1).

The movement of the cover during disengagement of the balls can be used to trip a limit switch and signal an overload condition. The drive should be shut down immediately and the source of the overload determined and cleared. After the clutch has been reset the drive can then be restarted.

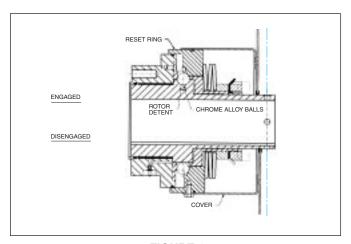


FIGURE 1

The **Manual Reset** (Style M or N) clutch can be reset in multiple positions. Rotate the drive until a lube fitting or a barring hole on the housing lines up with a tapped hole on the rotor. The rotor keyway should also be lined up with a lube fitting on the housing. After the proper position has been established, push evenly on both sides of the limit switch actuating plate. When the clutch is properly reset, the steel balls will move back into their detents and the actuating plate will return to its original position. An audible sound will be detected when the clutch re-engages, (See Figure 2).

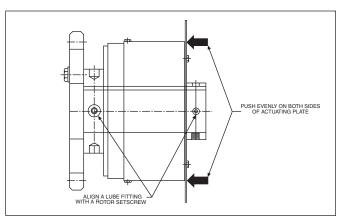


FIGURE 2

The **Automatic Reset** (Style A or B) version will re-engage without manual assistance. The steel balls will move back into their pockets every 1/4 of a revolution (1/8 of a revolution on the Size 11). After the overload condition has been cleared, jog the drive until the balls return to their detents and the actuating plate returns to its original position. An audible sound will be detected when the clutch re-engages.

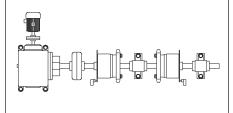
SELECTION

- 1. Determine the overload release torque by one of these methods:
 - a. Use the torque formula with horsepower and RPM specific to selected clutch location. A service factor may be required for high inertia starts, reversing or peak load conditions, (refer to Page 86 for service factor information. For average applications, a service factor "SF" of 1.25 is recommended):

Torque (Lb. In.) =
$$\frac{HP \times 63025}{RPM}$$
 X SF

- b. Maximum drive torque of chain: If using non-metallic chain, contact the manufacturer of the chain and ask for its maximum drive torque.
- c. For shear pin replacement: Contact your local Boston Gear Area Sales Manager or the factory. They will gladly calculate the shear torque of your existing shear pins for you.
- 2. Determine the bore size and keyway.
- 3. Choose the proper style from Figures 3, 4, or 5 based upon the drive layout.
- 4. Refer to the Basic Selection Chart for the appropriate clutch size.

BASIC SELECTION CHART


Size	Torque	Torque Rar	nge (LbIn.)	Maximum	Bore (In.)*
Size	Code	Minimum	Maximum	Style A/M	Style B/N
	L	850	1,700		
05	M	1,100	2,200	1.7500	2.0000
03	Н	1,400	2,800	1.7300	2.0000
	W	2,500	5,000		
	L	1,250	2,500		
06	M	1,800	3,750	2.2500	2.7500
00	Н	2,500	5,500	2.2300	2.7500
	W	4,000	8,000		
	L	2,250	5,750		
09	M	3,750	8,500	3.0000	4.2500
03	Н	5,500	12,000	3.0000	4.2300
	W	8,500	20,000		
	L	5,000	12,000		
11	М	9,000	16,500	4.0000	4.2500
' '	Н	12,000	25,000	7.0000	7.2300
	W	16,000	30,000		

^{*}Larger bores may require flat keys (supplied with unit).

FIGURE 3

Type B, Style A and M

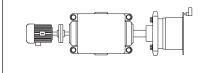
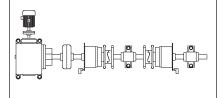
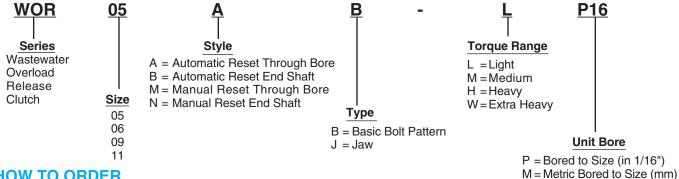

Through-Bore for line shaft sprocket drive applications typically found on rectangular tanks and longitudinal collector drives.

FIGURE 4

Type B, Style B and N


For end-shaft mounted sprocket drive applications including cross collectors and bar screens. End-shaft design accommodates larger shafts.


FIGURE 5

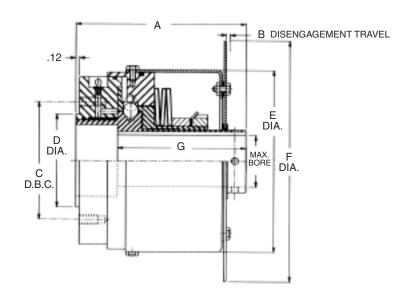
Type J, Style A and M

For through-bore sprocket drive applications which require a Jaw Clutch for manual disengagement of the drive. Jaw-Clutch/Sprocket assemblies are available from Boston Gear.

WOR SERIES PART NUMBERING SYSTEM

HOW TO ORDER

When ordering a WOR Series H1900 Overload Clutch for Wastewater Treatment applications, please include code letters/numbers for series, size, style, type, torque range, and bore size.


Example:

Required size, 05 WOR Series H1900 Overload Clutch, automatic reset, through-bore mounting, basic type, medium torque range, with a one inch bore:

WOR SERIES STYLE A AND M THROUGH-BORE

TYPE B BASIC SPROCKET MOUNTING

ALL DIMENSIONS IN INCHES

Clutch			0	D _		г	ГС		Mounting Holes			
Size	A	D	C	+.000/002		Г	G	No.	Thread	Depth	Sprocket	
05	5.76	.13	4.000	3.123	6.19	8.19	4.50	6	5/16-18	0.75	9 Tooth	
06	7.45	.17	4.875	4.000	7.62	9.62	5.25	8	1/2-13	1.12	9 Tooth	
09	9.14	.19	4.875	4.000	9.65	11.62	6.12	8	1/2-13	1.25	9 Tooth	
11	10.00	.19	6.500	5.500	9.65	11.62	7.00	8	1/2-13	1.25	11 Tooth	

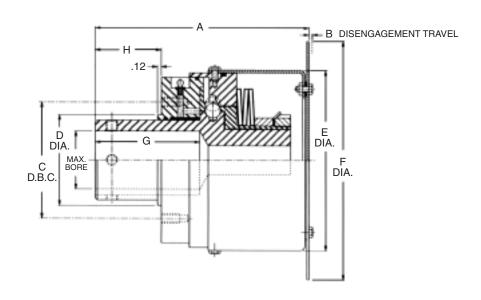
RATINGS

Clutch	Torque	Torque Rar	nge (Lb. In.)	Max.	Weight	
Size	Code	Min. Max.		RPM	(Lbs.)	
	L	850	1,700			
05	M	1,100	2,200	50	24	
0.5	Н	1,400	2,800	50	2-7	
	W	2,500	5,000			
	L	1,250	2,500		40	
06	M	1,800	3,750	50		
00	Н	2,500	5,500	30		
	W	4,000	8,000			
	L	2,250	5,750		80	
09	M	3,750	8,500	50		
09	Н	5,500	12,000	30	00	
	W	8,500	20,000			
	L	5,000	12,000			
11	M	9,000	16,500	50	87	
11	Н	12,000	25,000	50	07	
	W	16,000	30,000			

Clutches are shipped set for the minimum torque value of the specified range.

CLUTCH BORES

Clutch	Bores (inch)										
Size	Min.	Max. (1)	Max. (2)								
05	0.6250	1.6250	1.7500								
06	0.6250	2.1250	2.2500								
09	1.0000	2.7500	3.0000								
11	1.0000	3.7500	4.0000								


Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

Refer to Page 45 for ordering information.

WOR SERIES STYLE B AND N END-SHAFT

TYPE B BASIC SPROCKET MOUNTING

ALL DIMENSIONS IN INCHES

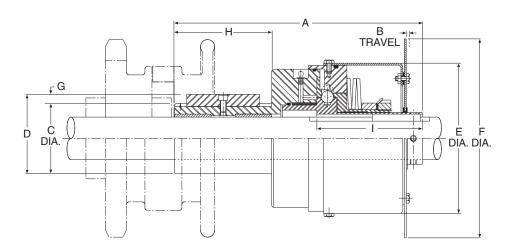
Clutch	Λ	р	_	D	_	_	_	0 11		Mounting Ho	Min. H78	
Size	A	В	C	+.000/002	E	Г	G	п	No.	Thread	Depth	Sprocket
05	7.00	0.13	4.000	3.123	6.19	8.19	3.30	2.09	6	5/16-18	0.75	9 Tooth
06	9.04	0.17	4.875	4.000	7.62	9.62	4.69	2.56	8	1/2-13	1.12	9 Tooth
09	10.75	0.19	6.500	5.500	9.65	11.62	5.88	3.00	8	1/2-13	1.25	11 Tooth
11	11.44	0.19	6.500	5.500	9.65	11.62	5.88	3.00	8	1/2-13	1.25	11 Tooth

RATINGS

Clutch	Torque	Torque Rai	nge (Lb. In.)	Max.	Weight		
Size	Code	Min.	Max.	RPM	(Lbs.)		
	L	850	1,700				
05	M	1,100	2,200	50	25		
03	Н	1,400	2,800	30	25		
	W	2,500	5,000				
	L	1,250	2,500				
06	M	1,800	3,750	50	42		
00	Н	2,500	5,500	30	72		
	W	4,000	8,000				
	L	2,250	5,750		83		
09	M	3,750	8,500	50			
09	Н	5,500	12,000	30	00		
	W	8,500	20,000				
	L	5,000	12,000				
11	M	9,000	16,500	50	87		
' '	Н	12,000	25,000	50	07		
	W	16,000	30,000				

Clutches are shipped set for the minimum torque value of the specified range.

CLUTCH BORES


Clutch	Bores	(inch)		
Size	Min.	Max. (1)		
05	0.6250	2.0000		
06	0.6250	2.7500		
09	1.0000	4.2500		
11	1.0000	4.2500		

Refer to Page 84 for a complete list of bore codes.
(1) Square Key

Refer to Page 45 for ordering information.

WOR SERIES STYLE A AND M THROUGH-BORE

TYPE J JAW CLUTCH ADAPTER

ALL DIMENSIONS IN INCHES

Clutch Size	А	В	С	D +.000/002	Е	F	G	Н	I
05	10.20	.13	2.875	3.250	6.19	8.19	.38	4.00	4.50
06	12.25	.17	3.500	3.875	7.62	9.62	.38	4.50	5.25
09	14.62	.19	4.000	4.500	9.65	11.62	.50	5.00	6.12
11	15.87	.19	5.000	5.500	9.65	11.62	.50	5.50	7.00

RATINGS

Clutch	Torque	Torque Rar	nge (Lb. In.)	Max.	Weight		
Size	Code	Min.	Max.	RPM	(Lbs.)		
	L	850	1,700				
05	M	1,100	2,200	50	31		
03	Н	1,400	2,800	30	51		
	W	2,500	5,000				
	L	1,250	2,500				
06	M	1,800	3,750	50	50		
00	Н	2,500	5,500	30			
	W	4,000	8,000				
	L	2,250	5,750				
09	M	3,750	8,500	50	96		
03	Н	5,500	12,000	30	30		
	W	8,500	20,000				
	L	5,000	12,000				
11	М	9,000	16,500	50	119		
''	Н	12,000	25,000	30	113		
	W	16,000	30,000				

Clutches are shipped set for the minimum torque value of the specified range.

CLUTCH BORES

Clutch	Bores (inch)										
Size	Min.	Max. (1)	Max. (2)								
05	0.6250	1.6250	1.7500								
06	0.6250	2.1250	2.2500								
09	1.0000	2.7500	3.0000								
11	1.0000	3.7500	4.0000								

Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

Refer to Page 45 for ordering information.

GENERAL INFORMATION

LIMIT SWITCH LAYOUT

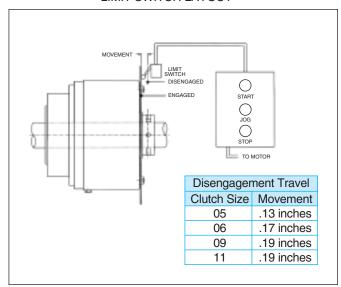


FIGURE 6
TORQUE OVERLOAD DETECTION

The WOR Series H1900 is offered with an automatic reset (Style A/B). Because of this feature, it is important that the drive be shut down immediately upon a torque overload condition. Figure 6 utilizes a single limit switch to detect an overload. The switch should be able to operate within the disengagement travel of the clutch. Upon an overload, an oversized stainless steel plate attached to the cover will move to actuate the limit switch and shut down the drive.

Torque Adjustment Wrench

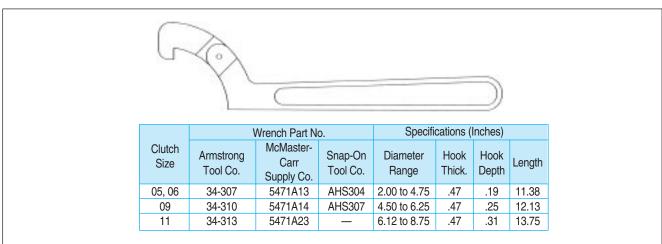
Standard bearing nuts are used to adjust the spring load which controls the release torque of the clutch. These nuts are slotted and can easily be turned using a common, commercially available hook style spanner wrench. Refer to the table at bottom of this page for wrenches which are compatible with Boston Gear's torque overload release clutches.

SUGGESTED SPECIFICATIONS FOR WATER AND WASTEWATER TREATMENT APPLICATIONS

Overload release clutches shall be installed to provide positive protection against damaging jams to the drives. They are to be located on the output sides of speed reducers, or as near as possible to the potential source of the overload so that the drive components are adequately protected.

The clutches shall be a ball detent type which when an overload occurs, the detent balls will roll free from their seat against pre-set spring pressure, completely disengaging the drive. Springs are to be a precision Belleville design conforming to spec. DIN-2092 and DIN-2093.

Resetting shall be a simple manual push back re-engagement (or automatic reset) and torque values will remain constant within plus or minus 10% after each disengagement or reengagement.


All clutches shall be fully adjustable through a wide torque range to meet varying conditions and include a maximum torque limit stop to prevent adjustment beyond designed torque values. A circular plate is to be incorporated in the cover as a means to operate a limit switch to annunciate and/or stop the drive.

The clutches shall be completely sealed suitable for outdoor installations, including a stainless steel cover, electroless nickel plated external parts, and an external grease fitting for packing the units.

Chrome alloy steel detent balls shall be hardened to 60 Rc and all major internal components hardened to 50 Rc minimum for long life.

The WOR Series H1900 Overload Release Clutches shall be manufactured by Boston Gear, Quincy, Massachusetts 02171.

TORQUE ADJUSTMENT WRENCH

H1900 OVERLOAD CLUTCHES

TORQUE LIMITER APPLICATION DATA

FAX TO 704-688-7403

Please select your product intent below and provide as much application information as possible.

1. Application: New Existing - Replacement Model #	6. Shut Down Method: Prox Plate Pin Style (ORC only)
2. Power transmission requirements at clutch location:HorsepowerRPM	Use the space below to note any relevant application data or to detail your question.
Limiting Torque Level	
3. Type: Mechanical Pneumatic	
4. Type: □ Fully Automatic □ Manual □ Semi Automatic (ORC model only)	
5. Method of Torque Transmission: ☐ Flexible Coupling ☐ Rigid Coupling ☐ Sprocket Mount	

H2000 PNEUMATIC OVERLOAD CLUTCHES

SECTION CONTENTS

FEATURES	52
OPERATING PRINCIPLES	52
SELECTION	
HOW TO ORDER	
RATINGS AND DIMENSIONS	
GENERAL INFORMATION	59
TORQUE CURVES	60

H2000 OVERLOAD CLUTCHES

H2000 PNEUMATIC OVERLOAD CLUTCHES POR SERIES

FEATURES:

- "In-Flight" torque control offers precise pneumatic torque control
- Remotely adjustable for starting and overrunning loads
- Bi-directional operation
- Single position indexing
- Automatic reset
- Through-shaft design
- Limit switch actuating mechanism
- Clamp collar for secure mounting
- Hardened parts for long clutch life
- Internal needle roller thrust bearings
- Lubrication fittings
- Sealed from environmental contamination
- Electroless nickel finish and stainless steel hardware for superior corrosion resistance
- Interchanges HOR Series

OPERATING PRINCIPLES

The POR Series H2000 is a pneumatic, ball detent style overload release clutch. It has been designed to provide accurate and dependable torque disconnect protection for mechanical power transmission equipment. Torque is transmitted through the clutch in one of two paths, (Refer to Figure 1).

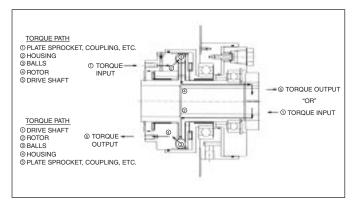


FIGURE 1

Torque transmission between the balls and housing is the key to the disengagement of the clutch. The balls are forced into the pockets of the housing by an axial load generated by an air cylinder. This axial load determines the torque capacity of the clutch. Increasing or decreasing the air pressure provides a means for remotely controlled precise "in-flight" torque adjustment. When a torque overload condition occurs, the balls roll out of the pockets and free wheel much as a ball thrust bearing. This rolling action increases the efficiency in which the clutch operates and reduces any fluctuation of torque setting due to frictional changes, (Refer to Figure 2).

The clutch has been designed with an internal valving mechanism. During an overload condition, the air is purged instantaneously from the cylinder.

The movement of the air cylinder during disengagement can be used to trip a limit switch and signal a torque overload condition. The drive should be shut down immediately and the source of the overload determined and cleared. The drive can then be restarted.

To engage the clutch, reapply air pressure and jog the drive until the clutch engages. Adjust the release torque by increasing the air pressure supplied to the clutch to reach the desired torque value. The clutch is now ready for normal operation.

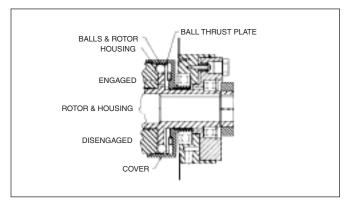


FIGURE 2

H2000 OVERLOAD CLUTCHES

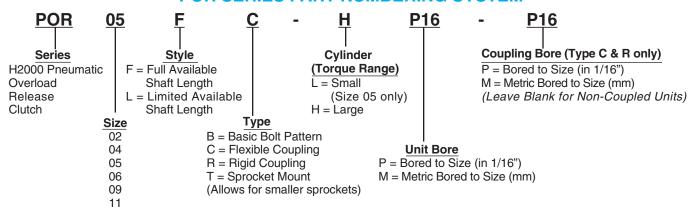
SELECTION

- Determine the overload release torque by one of these methods:
 - a. Use the torque formula with horsepower and RPM specific to the selected clutch location. A service factor may be required for high inertia starts, reversing or peak load conditions, (refer to Page 86 for service factor information. For average applications, a service factor "SF" of 1.25 is recommended):

Torque (Lb. In.) =
$$\frac{HP \times 63025}{RPM}$$
 X SF

- b. Determine the "weak link" in the drive train, (i.e., chain, reducer, belt or shaft). Select an overload release torque below the "weak link's" maximum torque rating.
- Physically measure the drive torque with a torque wrench and size accordingly.
- 2. Determine the bore size(s) and keyway(s):
 - Shaft size at the clutch location determines the clutch bore.
 - Shaft size at the coupling location determines the coupling bore, (if applicable).
- 3. Choose the appropriate Style (See Figure 3) based upon the drive layout and available space.
- 4. Refer to the Basic Selection Chart for the appropriate clutch size. Determine the approximate start-up and running air pressures for the application.
- 5. Refer to Part Numbering System to complete selection.

BASIC SELECTION CHART


Clutch Size	Max.* Bore (In.)	Torque Code	Torque Range (LbIn.)	Max. RPM
02	0.750	Н	120-470	3,600
04	1.187	Н	400-1,400	1,800
05	1.750	L	850-2900	1,800
03	1.750	Н	1,350-4,700	1,000
06	0.105	L	1,000-4,050	1 000
06	2.125	Н	2,800-7,800	1,200
09	3.125	Н	5,800-17,800	1,200
11	3.250	Н	8,200-33,000	1,200

^{*}Larger bores may require flat keys (supplied with unit).

FIGURE 3

Style F is used where full shaft length is available.	Style F
Style L is used where shaft length is limited and/or overhung load is excessive.	Style L

POR SERIES PART NUMBERING SYSTEM

HOW TO ORDER

When ordering a POR Series H2000 Overload Clutch, please include code letters for series, size, style, type, torque range, unit bore and coupling bore (if applicable). Not all combinations are possible. Please refer to Pages 54-57 for details. **Example:**

Required size, 05 POR Series H2000 Overload Clutch, full available shaft length, flexible coupling, large torque range, with a one inch unit bore and a one inch coupling bore:

POR SERIES STYLE F

TYPE B BASIC SPROCKET MOUNTING

ALL DIMENSIONS IN INCHES

Clutch Size	В	С	D	Е	F	G	Н	I	K	L	L1	P +.000/002	R	S	Т	Weight (Lbs.)
02	1.75	0.29	2.81	0.45	3.50	3.88	1.84	2.19	0.56	4.47	2.95	1.781	5.81	2.63	.060	5.0
04	2.38	0.35	4.25	0.56	4.00	4.75	1.76	2.79	0.54	5.57	3.77	2.688	7.25	3.63	.078	11.6
05	3.50	0.43	5.87	0.70	6.25	6.63	2.87	3.33	0.77	6.88	4.57	3.625	8.88	5.00	.110	28.3
06	4.25	0.50	7.13	0.80	7.25	7.75	3.00	3.54	0.72	7.42	5.00	4.000	10.12	5.56	.128	41.0
09	5.75	1.03	9.50	1.40	9.25	10.00	3.87	4.63	1.03	9.75	6.30	5.750	12.50	7.56	.165	98.5
11	6.00	1.28	11.62	1.65	11.50	12.25	4.50	5.20	1.25	11.25	7.44	6.500	14.62	9.00	.183	155

MOUNTING DETAIL

Clutch Size	Thread Depth Y	Thread Size Z	Bolt Centers M
02	0.38	8-32	2.125
04	0.50	10-24	3.062
05	0.75	5/16-18	4.250
06	0.81	3/8-16	4.750
09	0.88	7/16-14	6.625
11	1.00	5/8-11	7.750

RATINGS

Clutch Size	Torque Code	Torque Range (Lb. In.)	Max. RPM	WR ^{2*} (Lb-In ²)
02	Н	120 - 470	3,600	3.3
04	Н	400-1,400	1,800	18.6
05	L	850-2,900	1,800	80.0
05	Н	1,350-4,700	1,000	80.0
06	Н	2,800-7,800	1,200	175
09	Н	5,800-17,800	1,200	805
11	Н	8,200-33,000	1,200	1,863

^{*}Estimated with maximum bores.

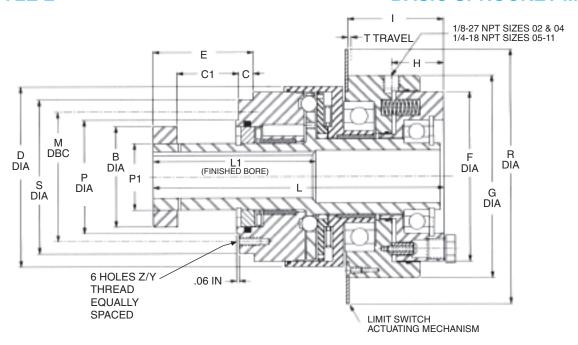
Clutches are shipped set for the minimum torque value for the selected range.

Refer to Page 53 for ordering information.

CLUTCH BORES

Clutch	Bores (inch)						
Size	Max. (1)	Max. (2)					
02	0.6250	0.7500					
04	1.1250	1.1875					
05	1.5625	1.6250					
06	2.0000	2.1250					
09	2.8750	3.1250					
11	3.1250	3.2500					

Refer to Page 84 for a complete list of bore codes.


- (1) Square Key
- (2) Flat Key

MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE B CLUTCHES

		Standard Chain Size and Pitch										
Clutch	Туре	#25	#35	#40	#50	#60	#80	#100				
Size	турс	1/4	3/8	1/2	5/8	3/4	1	1-1/4				
		Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch				
02	В	39	27	22	_		_	_				
04	В	51	35	28	23		_	_				
05	В	69	47	36	30	26	_	_				
06	В	76	52	40	33	28	_	_				
09	В	101	68	52	43	36	28	24				
11	В	119	80	61	50	43	33	27				

POR SERIES STYLE L

TYPE B BASIC SPROCKET MOUNTING

ALL DIMENSIONS IN INCHES

Clutch Size	В	С	C1	D	Е	F	G	Н	I	L	L1	P +.000/002	Min.	Max.	R	S	Т	Weight (Lbs.)
02	1.75	0.29	1.00	2.81	1.79	3.50	3.88	1.28	1.63	5.24	3.00	1.781	0.9843	0.9847	5.81	2.63	.060	5.2
04	2.38	0.35	1.44	4.25	2.35	4.00	4.75	1.22	2.25	6.83	3.81	2.688	1.5728	1.5738	7.25	3.63	.078	11.9
05	3.50	0.43	1.54	5.87	2.72	6.25	6.63	2.10	2.60	8.12	4.66	3.625	2.3623	2.3628	8.88	5.00	.110	28.9
06	4.25	0.50	2.25	7.13	3.50	7.25	7.75	2.28	2.82	9.40	5.46	4.000	2.7560	2.7566	10.12	5.56	.128	42.3
09	5.75	1.03	2.50	9.50	4.53	9.25	10.00	2.84	3.60	11.85	7.22	5.750	3.9350	3.9370	12.50	7.56	.165	103
11	6.50	1.28	2.63	11.62	5.28	11.50	12.25	3.25	3.95	13.63	8.16	6.500	4.7220	4.7240	14.62	9.00	.183	160

MOUNTING DETAIL

	Thread	Thread	Bolt
Clutch	Depth	Size	Centers
Size	Υ	Z	M
02	0.38	8-32	2.125
04	0.50	10-24	3.062
05	0.75	5/16-18	4.250
06	0.81	3/8-16	4.750
09	0.88	7/16-14	6.625
11	1.00	5/8-11	7.750

RATINGS

		101111400		
Clutch	Torque	Torque Range	Max.	WR ^{2*}
Size	Code	(Lb. ln.)	RPM	(Lb-In²)
02	Н	120 - 470	3,600	3.4
04	Н	400-1,400	1,800	18.9
05	L	850-2,900	1,800	81.7
03	Н	1,350-4,700	1,000	01.7
06	Н	2,800-7,800	1,200	178
09	Н	5,800-17,800	1,200	820
11	Н	8,200-33,000	1,200	1,889

^{*}Estimated with maximum bores.

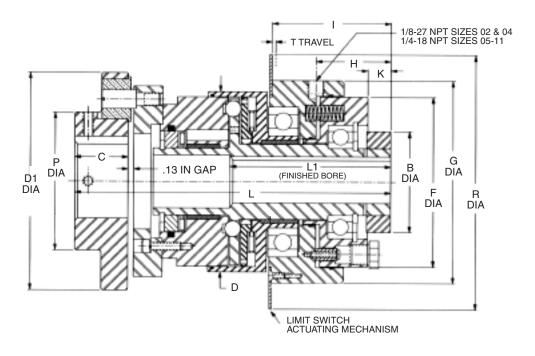
Clutches are shipped set for the minimum torque value for the selected range.

CLUTCH BORES

Clutch	Bores (inch)							
Size	Max. (1)	Max. (2)						
02	0.6250	0.7500						
04	1.1250	1.1875						
05	1.7500	_						
06	2.0000	2.1250						
09	2.8750	3.1250						
11	3.1250	3.2500						

Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key


MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE B CLUTCHES

			Standard Chain Size and Pitch										
Clutch Size	Туре	#25 1/4	#35 3/8	#40 1/2	#50 5/8	#60 3/4	#80 1	#100 1-1/4					
		Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch					
02	В	39	27	22	_	_	_	_					
04	В	51	35	28	23	_	_	_					
05	В	69	47	36	30	26	_	_					
06	В	76	52	40	33	28	_	_					
09	В	101	68	52	43	36	28	24					
11	В	119	80	61	50	43	33	27					

Refer to Page 53 for ordering information.

POR SERIES STYLE F

TYPE C FLEXIBLE COUPLING

ALL DIMENSIONS IN INCHES

Clutch Size	В	С	D	D1	F	G	Н	I	K	L	L1	Р	R	Т	Parallel Offset	Angular Mis- alignment	Weight (Lbs.)
02	1.75	1.25	2.81	3.94	3.50	3.88	1.84	2.19	0.56	6.44	2.95	2.50	5.81	.060	.012	1°	8.6
04	2.38	1.25	4.25	5.13	4.00	4.75	1.76	2.79	0.54	7.42	3.77	3.25	7.25	.078	.016	1°	18.5
05	3.50	2.38	5.87	6.88	6.25	6.63	2.87	3.33	0.77	10.62	4.57	3.88	8.88	.110	.027	1°	47.2
06	4.25	2.88	7.13	8.13	7.25	7.75	3.00	3.54	0.72	11.94	5.00	4.25	10.12	.128	.045	1°	79.7
09	5.75	4.00	9.50	11.13	9.25	10.00	3.87	4.63	1.03	15.25	6.30	6.13	12.50	.165	.045	1°	174
11	6.00	4.50	11.62	14.00	11.50	12.25	4.50	5.20	1.25	17.26	7.44	7.50	14.62	.183	.045	1°	289

Parallel and angular misalignment are proportionally reduced when both are present.

TORQUE RANGE RATINGS

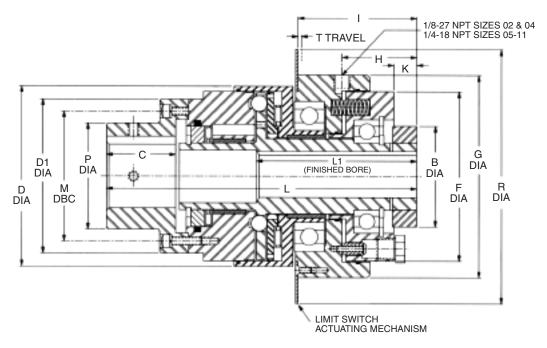
Clutch Size	Torque Code	Torque Range (Lb. In.)	Max. RPM	WR ^{2*} (Lb-In ²)
02	Н	120 - 470	3,600	9.6
04	Н	400-1,400	1,800	39.5
05	L	850-2,900	1,800	192
03	Н	1,350-4,700	1,000	192
06	Н	2,800-7,800	1,200	458
09	Н	5,800-17,800	1,200	1,975
11	Н	8,200-33,000	1,200	5,083

^{*}Estimated with maximum bores.

Clutches are shipped set for the minimum torque value for the selected range.

CLUTCH AND COUPLING BORES

Clutch	Tuna	Bore	s (inch)	
Size	Type	Max. (1)	Max. (2)	
02	Clutch	0.6250	0.7500	
02	Coupling	1.1875	_	
04	Clutch	1.1250	1.1875	
04	Coupling	1.8750	_	
05	Clutch	1.5625	1.6250	
US	Coupling	2.3125	2.3750	
06	Clutch	2.0000	2.1250	
00	Coupling	2.6250	2.7500	
09	Clutch	2.8750	3.1250	
09	Coupling	4.0000	4.1250	
11	Clutch	3.1250	3.2500	
' '	Coupling	4.6250	5.0000	


Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

Refer to Page 53 for ordering information.

POR SERIES STYLE F

TYPE R RIGID COUPLING

ALL DIMENSIONS IN INCHES

Clutch Size	В	С	D	D1	F	G	Н	I	K	L	L1	М	Р	R	Т	Weight (Lbs.)
02	1.75	0.75	2.81	2.63	3.50	3.88	1.84	2.19	0.56	5.31	2.95	2.125	1.38	5.81	.060	5.8
04	2.38	1.62	4.25	3.63	4.00	4.75	1.76	2.79	0.54	7.29	3.77	3.062	2.50	7.25	.078	13.9
05	3.50	2.13	5.87	5.00	6.25	6.63	2.87	3.33	0.77	9.11	4.57	4.250	3.31	8.88	.110	33.6
06	4.25	2.20	7.13	5.56	7.25	7.75	3.00	3.54	0.72	9.71	5.00	4.750	3.50	10.12	.128	48.6
09	5.75	3.34	9.50	7.56	9.25	10.00	3.87	4.63	1.03	13.18	6.30	6.625	5.25	12.50	.165	118
11	6.00	3.96	11.62	9.00	11.50	12.25	4.50	5.20	1.25	15.30	7.44	7.750	7.50	14.62	.183	184

RATINGS

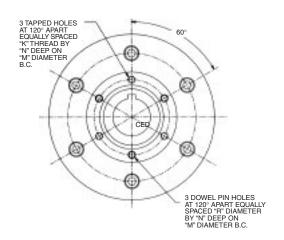
Clutch Size	Torque Code	Torque Range (Lb. In.)	Max. RPM	WR ^{2*} (Lb-In ²)
02	Н	120 - 470	3,600	4.0
04	Н	400-1,400	1,800	22.6
05	L	850-2,900 1,800		97.0
03	Н	1,350-4,700	1,000	97.0
06	Н	2,800-7,800	1,200	205
09	Н	5,800-17,800	1,200	945
11	Н	8,200-33,000	1,200	2,158

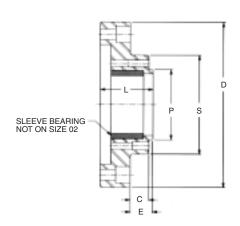
^{*}Estimated with maximum bores.

Clutches are shipped set for the minimum torque value for the selected range.

CLUTCH AND COUPLING BORES

Clutch	Tuna	Во	res		
Size	Type	Max. (1)	Max. (2)		
02	Clutch	0.6250	0.7500		
02	Coupling	0.7500	_		
04	Clutch	1.1250	1.1875		
04	Coupling	1.6250	1.6875		
05	Clutch	1.5625	1.6250		
US	Coupling	2.1250	2.2500		
06	Clutch	2.0000	2.1250		
00	Coupling	2.2500	2.3125		
09	Clutch	2.8750	3.1250		
09	Coupling	3.3750	3.5000		
11	Clutch	3.1250	3.2500		
''	Coupling	4.0000	4.1250		


Refer to Page 84 for a complete list of bore codes.


- (1) Square Key
- (2) Flat Key

Refer to Page 53 for ordering information.

POR SERIES TYPE T ADAPTER

TYPE T SPROCKET, PULLEY, SHEAVE, OR GEAR MOUNT

ALL DIMENSIONS IN INCHES

Clutch Size	С	D	Е	К	L	М	N	P +.000/002	R	S	WR² (LbIn.²)	Weight (Lbs.)
02	0.28	2.63	0.40	#8-32	0.71	1.422	.38	1.094	_	1.75	0.5	0.5
04	0.34	3.63	0.63	#8-32	1.02	2.250	.38	1.922	3/16	2.58	2.0	1.0
05	0.47	5.00	0.59	1/4-20	1.26	3.219	.50	2.750	1/4	3.66	12	3.0
06	0.69	5.56	0.81	1/4-20	1.55	3.406	.50	2.938	1/4	3.90	25	5.4
09	0.88	7.56	1.00	3/8-16	2.00	5.094	.75	4.344	3/8	5.84	93	11
11	1.02	9.00	1.14	3/8-16	2.32	5.938	.75	5.188	1/2	6.69	241	19

Mounting bolts must be minimum 160,000 PSI tensile, Rc 36-43. Dowel pins must be minimum 150,000 PSI shear, Rc 50-58 core hardness.

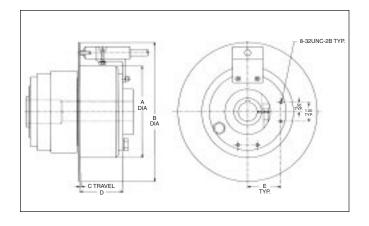
MINIMUM NUMBER OF TEETH ADAPTABLE TO TYPE T CLUTCHES TYPE T CLUTCHES ALLOW FOR THE USE OF SMALLER SPROCKETS

			;	Standard	d Chain S	ize and F	Pitch	
Clutch	Type	#25	#35	#40	#50	#60	#80	#100
Size	Size Type	1/4	3/8	1/2	5/8	3/4	1	1-1/4
		Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch
02	Т	27	19	15	_	_	_	_
04	Т	37	26	20	17	_	_	_
05	Т	50	35	27	23	19	_	_
06	Т	54	37	29	24	20	16	14
09	Т	79	54	41	34	29	23	19
11	Т	90	61	47	38	32	25	21

The Type T adapter may be ordered separately or factory mounted to the POR Series Clutches shown on Pages 54 and 55, by specifying Type T.

GENERAL INFORMATION

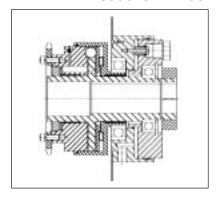
LIMIT SWITCHES

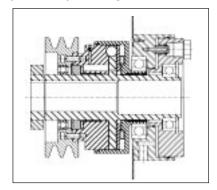

The POR Series H2000 clutch is an automatic reset device. It is important that the drive be shut down immediately upon a torque overload condition. The switch should be able to operate within the disengagement travel of the clutch. Upon an overload, the cylinder of the clutch will move to actuate the limit switch and shut down the drive. An oversized metallic plate provides a means for sensing movement from both ends and for utilizing a precision proximity switch.

As an option, Boston Gear offers a limit switch kit which mounts directly to the clutch. There are two sets of tapped holes on the face of the piston for mounting two limit switches. One switch may be used for your pneumatic control unit and the other switch may be used for the motor control. The motor control switch is used to open the circuit to the motor during a torque overload condition. The switch should be wired in its normally closed condition and in parallel with the JOG button of the motor control. This will permit the drive to be started in the event the clutch has stopped with the limit switch circuit in an open state.

The kit comes complete with a mechanical limit switch, mounting bracket and mounting hardware. Figure 4 shows the limit switch kits available for the POR Series H2000. Before using this switch in your circuit, verify that the electrical ratings meet your requirements.

FIGURE 4 LIMIT SWITCH KIT


Clutch Size	Item Code
02 & 04	76493
05 & 06	76494
09 & 11	17571


Clutch Size	Α	В	С	D	Е
02	3.88	5.81	.060	1.63	1.50
04	4.75	7.25	.078	2.25	1.73
05	6.63	8.88	.110	2.60	2.63
06	7.75	10.12	.128	2.82	3.06
09	10.00	12.50	.165	3.60	4.00
11	12.25	14.62	.183	3.95	5.00

Consult factory for ordering information.

FIGURE 5 SUGGESTED MOUNTING ARRANGEMENTS



TYPE B, STYLE F
WITH SPROCKET MOUNTED

TYPE B, STYLE L
WITH SHEAVE MOUNTED

TORQUE CURVES

H2000 OVERLOAD CLUTCHES

TORQUE LIMITER APPLICATION DATA

FAX TO 704-688-7403

Please select your product intent below and provide as much application information as possible.

1. Application: New Existing - Replacement Model #	6. Shut Down Method: Prox Plate Pin Style (ORC only)
2. Power transmission requirements at clutch location: ☐ Horsepower ☐ RPM	Use the space below to note any relevant application data or to detail your question.
☐ Limiting Torque Level	
3. Type: Mechanical Pneumatic	
4. Type: □ Fully Automatic □ Manual □ Semi Automatic (ORC model only)	
5. Method of Torque Transmission: ☐ Flexible Coupling	
Rigid Coupling Sprocket Mount Other:	

NOTES

PDC SERIES

PNEUMATIC OVERLOAD DISCONNECT CLUTCHES

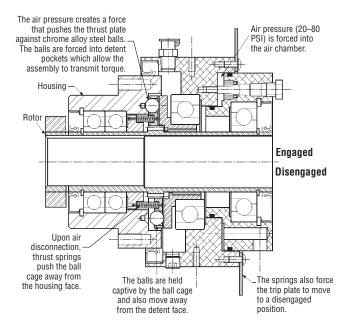
SECTION CONTENTS

FEATURES	64
OPERATING PRINCIPLES	64
SELECTION	65
HOW TO ORDER	65
DIMENSIONS	66

PNEUMATIC OVERLOAD DISCONNECT CLUTCHES

PDC SERIES

FEATURES


- "In-Flight" torque control offers precise pneumatic torque control
- Nickel plated and stainless steel exterior for superior corrosion resistance
- Completely sealed design
- Remotely adjustable for starting and overrunning loads
- Accurate and dependable disconnection,
 +/- 5% of torque setting
- Single position ball detent
- Provides maximum radial capacity, eliminating sprocket mounted bearings
- Dual radial ball bearings
- Internal valve
- Through shaft design
- Bi-directional operation
- Single position indexing
- Automatic reset
- Limit switch actuation mechanism
- Clamp collar for secure mounting
- Hardened parts for long clutch life
- Sealed from environmental contamination

The Boston Gear PDC Series Pneumatic Torque Limiting Disconnect Clutch is unique from other pneumatic clutches on the market today. Along with providing the expected protection from overloads in your equipment, it also allows the rotation of the two halves when the air is off and exhausted from the clutch.

The PDC clutches are completely sealed from the atmosphere and other harmful contaminants and all exterior surfaces are nickel plated for corrosion resistance and wash down service. Angular contact ball bearings are used in the units to provide added thrust capacity. Since many of these clutches are used with timing belt pulleys or sprockets, we have designed the unit with two radial ball bearings to provide support to the pulley or sprocket.

OPERATING PRINCIPLES

The Boston Gear PDC Series Pneumatic Disconnect Clutch is a ball detent air actuated device. It has been designed to provide accurate and dependable torque overload protection for mechanical power transmission equipment. It has also been designed to provide a remote disconnection of the drive when the air supply is removed. The following diagram demonstrates the engaged and disengaged functions.

The top half of the view shows the unit in an engaged condition. 20 to 80 psi of shop air is forced into the air chamber. That air pressure exerts a force on a hardened thrust plate that pushes against six chrome alloy steel balls. The balls are forced into detent pockets, which allow the assembly to transmit torque. Increasing or decreasing the air pressure remotely controls precision "in flight" torque adjustment. The machinery can still be in operation when the torque rating is being adjusted. When a torque overload occurs, the housing and rotor rotate independently of each other. The balls roll out of their detents and a limit switch actuating plate moves forward to trip a limit switch and signal a torque overload condition. The drive should be shut down immediately and the source of the overload determined and cleared. To re-engage the clutch, re-apply the air pressure and jog the drive until the clutch engages. The PDC Series is a single position device. The unit will re-engage every 360° in the same location every time.

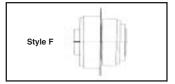
The bottom half of the view shows the unit in a disengaged condition. When air is disconnected, internal springs push the ball cage away from detent face of the housing. The balls are held captive by the ball cage so they also move away from the detent face. At this point, the unit is free to rotate in a disengaged condition. The main components that transmit torque are not in contact with each other.

PNEUMATIC OVERLOAD DISCONNECT CLUTCHES

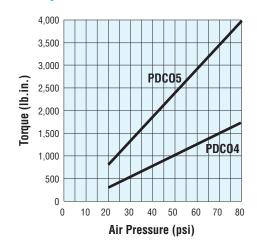
SELECTION

- Determine overload release torque by one of these methods:
 - a. Use the torque formula with horsepower and RPM specific to the selected clutch location. A service factor may be required for high inertia starts, reversing or peak load conditions, (refer to Page 86 for service factor information. For average applications, a service factor "SF" of 1.25 is recommended):

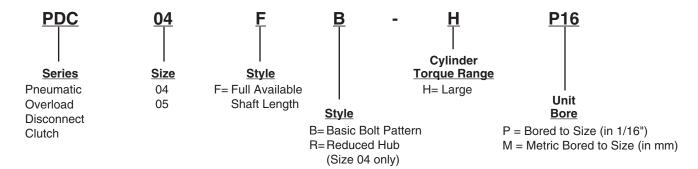
Torque (Lb. In.) =
$$\frac{HP \times 63025}{RPM}$$
 X SF


- b. Determine the "weak link" in the drive train, (i.e. chain, reducer, belt or shaft). Select an overload release torque that is below the "weak link's" maximum torque rating.
- c. Physically measure the drive torque with a torque wrench and size accordingly.
- 2. Determine the bore size:
 - Shaft size at the clutch location determines the clutch bore.
- 3. Refer to the Basic Selection Chart for the appropriate clutch size. Determine the approximate start-up and running air pressures for the application.
- 4. Refer to Pages 66 and 67 for ratings, dimensions and types.
- 5. Refer to Part Numbering System to complete selection.

BASIC SELECTION CHART


Clutch Size	Max.* Bore (In.)	Torque Code	Torque Range (LbIn.)	Max. RPM
04	1.1875	Н	300-1,700	1,800
05	1.7500	Н	820-4,000	1,800

*Larger bores may require flat keys (supplied with unit)


Style F is used where full shaft length is available.

PDC Torque Curves

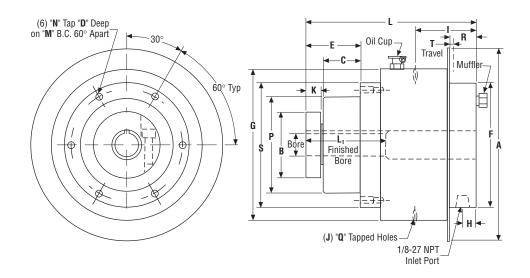
PDC SERIES PART NUMBERING SYSTEM

HOW TO ORDER

When ordering a PDC Series Overload Clutch, please include code letters/numbers for series, size, type, torque range, and unit bore.

Example:

Required Size 04 PDC series Overload Clutch, full available shaft length, basic mount, large torque range with a one inch bore.



PDC SERIES STYLE F

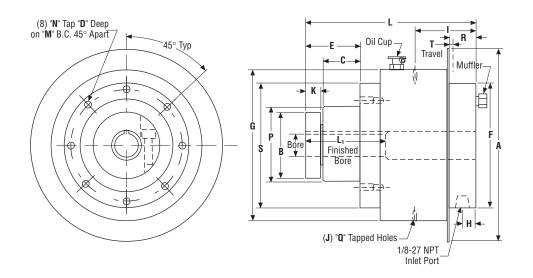
TYPE B BASIC HUB DESIGN

ALL DIMENSIONS IN INCHES

Clutch Size	Α	В	С	D	Е	F	G	Н	I	J	K
04	7.00	2.38	1.36	.63	2.00	4.67	5.50	.34	2.20	3	.56
05	8.00	3.38	1.14	.94	1.98	5.92	6.58	.50	2.20	4	.75

Clutch Size	L	L1	М	N	P +.000/002	Q	R	S	Т
04	6.20	2.70	4.062	5/16-18	3.500	1/4-20	.95	4.53	.13
05	7.18	3.22	4.750	3/8-16	4.125	10-24	1.16	5.25	.15

CLUTCH BORES


Clutch	Bores (inch)					
Size	Max. (1)	Max. (2)				
04	1.1250	1.1875				
05	1.6250	1.7500				

Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

PDC SERIES STYLE F

TYPE R REDUCED HUB DESIGN

ALL DIMENSIONS IN INCHES

Clutch Size	Α	В	С	D	E	F	G	Н	I	J	K
04	7.00	2.38	1.36	.56	2.00	4.67	5.50	.34	2.20	3	.56

Clutch Size	L	L1	М	N	P +.000/002	Q	R	S	Т
04	6.20	2.70	3.312	8-32	3.000	1/4-20	.95	4.53	.13

CLUTCH BORES

Clutch	Bores (inch)					
Size	Max. (1)	Max. (2)				
04	1.1250	1.1875				

Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

PNEUMATIC OVERLOAD DISCONNECT CLUTCHES

TORQUE LIMITER APPLICATION DATA

FAX TO 704-688-7403

Please select your product intent below and provide as much application information as possible.

1. Application: New Existing - Replacement Model #	6. Shut Down Method: Prox Plate Pin Style (ORC only)
2. Power transmission requirements at clutch location:	Use the space below to note any relevant application data or to detail your question.
☐ Limiting Torque Level	
3. Type: Mechanical Pneumatic	
4. Type: □ Fully Automatic □ Manual □ Semi Automatic (ORC model only)	
 5. Method of Torque Transmission: Flexible Coupling Rigid Coupling Sprocket Mount 	

VOR SERIES

VARITORQUE PNEUMATIC OVERLOAD CLUTCHES

SECTION CONTENTS

FEATURES	70
OPERATING PRINCIPLES	70
SELECTION	71
HOW TO ORDER	71
RATINGS AND DIMENSIONS	72
GENERAL INFORMATION	73

VARITORQUE PNEUMATIC OVERLOAD CLUTCHES

VARITORQUE PNEUMATIC OVERLOAD CLUTCHES VOR SERIES

FEATURES

- "In Flight" torque control. Precise torque control adjustable for starting and overrunning loads
- Single positioning for re-engagement at the exact cycle point at which it released
- Torque accuracy within ±5%
- Bi-directional operation
- Electroless nickel finish
- Six point drive engagement
- Automatic disconnect
- Deublin flange mounted air union
- Automatic switch actuating plate for instantaneous remote detection of overload condition
- Completely enclosed for "dirty" applications
- Pressure lubrication
- Positive split locking collar for secure shaft mounting
- Operates on static air pressure (20-80 psi), no elaborate air systems required

OPERATING PRINCIPLES

AIR UNION

The air pressure supplied to the clutch enters through the hex steel rotor of the Deublin air union. When the VOR Series VariTorque is engaged and operating, the union rotor is the only stationary part. The union housing rotates on a double row ball bearing protected by dirt-tight seals. A spring-loaded carbon micro-lapped seal prevents air leakage between the rotor and housing of the union. The air passes through the union housing into the cylinder assembly of the VariTorque.

CYLINDER ASSEMBLY

Air pressure acts against the surface area of the piston exerting a force to move the piston against the pressure pins. Resulting torque ranges are developed by different size piston surface areas of the two cylinder sizes, (L-small, H-large).

The switch actuating plate moves with the piston. It is directly connected to the piston through the cylinder housing via trip pins and trip plate bolts. The plate's lateral motion can be used to actuate a limit switch signaling an overload condition.

The valve assembly located through the piston serves two purposes. The first is to provide the single position engagement of the clutch. The piston will not be energized until the valve is seated in its cam seat located on the end of the rotor. This ensures that the rotor and cylinder-housing assembly always engage in the same relative position. The second purpose of the valve assembly is to relieve cylinder air pressure by allowing it to escape through the air exhaust muffler upon overload.

PISTON SPRINGS

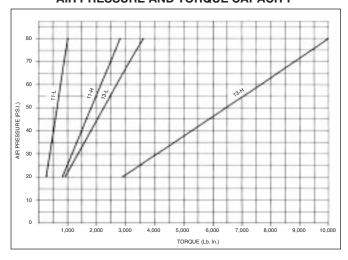
Once the valve is seated in its single home position, the clutch can be engaged. Air pressure forces the piston against the three piston springs. These springs serve to move the piston and switch actuating plate out when the clutch overloads or the air pressure is shut off to the clutch.

HOUSING ASSEMBLY

The force from the piston is transmitted to six pressure pins. Six pawls equally spaced around the rotor are forced by the pressure pins to engage into six notches in the rotor barrel. The pressure pins, pawls and rotor are made of alloy steel and are electroless nickel plated for long life.

When the set torque limit in the VariTorque is exceeded, the pawls are forced out of the notches in the rotor barrel. They in turn push the pressure pins and piston. When the rotor turns in relation to the housing-cylinder assembly, the valve rides up the ramp of the cam seat and relieves the cylinder air pressure. The rotor now can rotate freely, independent of the housing assembly on two sealed ball bearings.

VARITORQUE PNEUMATIC OVERLOAD CLUTCHES

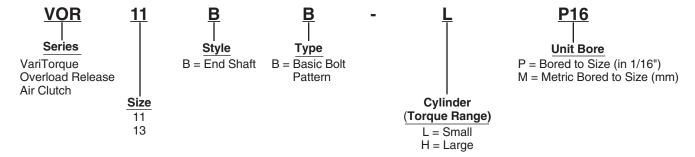

SELECTION

- Determine the overload release torque by one of these methods:
 - a. Use the torque formula with horsepower and RPM specific to the selected clutch location. A service factor may be required for high inertia starts, reversing or peak load conditions, (refer to Page 86 for service factor information. For average applications, a service factor "SF" of 1.25 is recommended):

Torque (Lb. In.) =
$$\frac{HP \times 63025}{RPM} \times SF$$

- b. Determine the "weak link" in the drive, (i.e. chain, reducer, belt or shaft). Select an overload release torque below the "weak link's" maximum torque rating.
- Physically measure the drive torque with a torque wrench and size accordingly.
- 2. Determine the bore size and keyway.
- 3. Determine the approximate start-up and running air pressures for the application.
- 4. Refer to the Basic Selection Chart for the appropriate clutch size.
- 5. Refer to Page 72 for ratings and dimensions.
- 6. Refer to Page 85 for recommended mounting locations.

FIGURE 1 AIR PRESSURE AND TORQUE CAPACITY



BASIC SELECTION CHART

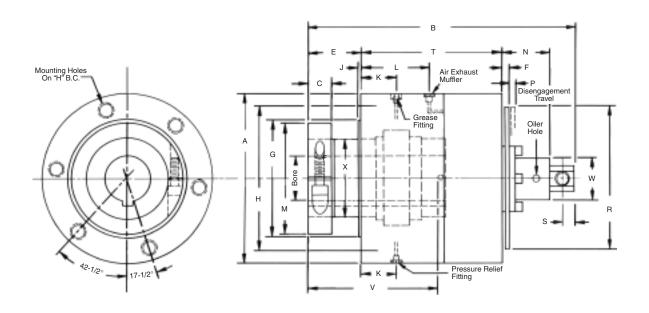
	Clutch Size	Maximum Bore (In.)*	Torque Code	Torque Range (Lb. In.)	Maximum RPM
	11	1.3125	L	250-1,000	1 000
	11	1.2500	Н	800-2,800	1,000
	10	2.1875	L	900-3,600	1 000
	13	2.0000	Н	2,800-10,000	1,000

^{*}Larger bores may require flat keys (supplied with unit).

VOR SERIES PART NUMBERING SYSTEM

HOW TO ORDER

When ordering a VOR Series VariTorque Overload Clutch, please include code letters/numbers for series, size, style, type, torque range, and unit bore.


Example:

Required Size, 11 VOR Series Overload Clutch, end shaft mount, basic type, small torque range, with a one inch bore:

VOR SERIES STYLE B

TYPE B BASIC SPROCKET MOUNTING

ALL DIMENSIONS IN INCHES

Cluto		В	С	Е	F	G ±.001	H Bolt Center	J	K	L	M	N	Р	R	S	Т	٧	W	X +.0000 0005		ounting Holes Thread Size
11	4.75	9.03	.68	1.50	.21	2.748	3.500	.06	0.96	1.69	2.75	2.19	.13	4.75	.44	4.42	3.03		1.7722	6	5/16-18
13	6.50	10.19	.87	2.00	.21	4.498	5.500	.06	1.38	2.62	4.00	1.81	.16	6.50	.44	5.44	4.47	1.62	2.7565	6	5/8-11

RATINGS

Clutch Size	Torque Code	Torque Range (LbIn.)	Max. RPM	Air Inlet (NPT)	WR² (Lbln.²)	Weight (Lbs.)
4.4	L	250-1,000	1,000	1/4	45.7	17
11	Н	800-2,800	1,000	1/4	46.5	18
13	L	900-3,600	1,000	1/4	197	39
13	Н	2,800 - 10,000	1,000	1/4	212	41

Clutches are shipped set for the minimum torque value of the selected range.

CLUTCH BORES

Clutch	Torque	Bores	(inch)
Size	Range	Max. (1)	
4.4	L	1.1875	1.3125
11	Н	1.1875	1.2500
13	L	1.7500	2.1875
13	Н	1.7500	2.0000

Refer to Page 84 for a complete list of bore codes.

- (1) Square Key
- (2) Flat Key

VARITORQUE PNEUMATIC OVERLOAD CLUTCHES

GENERAL INFORMATION

LIMIT SWITCH

In the layout in Figure 2 the limit switch should be wired in its normally closed condition. The switch is used to open the circuit to the motor during a torque overload condition. The switch should be wired in parallel with the JOG button so the drive may be started in the event the VariTorque clutch has stopped with the limit switch circuit in an open state.

AIR CONTROLS

The HIGH pressure regulator should be set at a pressure just HIGH enough to permit the VariTorque clutch to overcome any **momentary overload torques** caused during the machine's start-up and stopping period.

The LOW pressure regulator should be set at a pressure just LOW enough to permit the VariTorque clutch to overcome the **normal operating torques** caused during the machines running period and to permit a crisp and positive reengagement of the VariTorque clutch should an overload occur.

INDIRECT DRIVES

The VariTorque overload release air clutch is utilized in conjunction with chain sprockets or belt driven sheaves. For chain and sprocket applications smaller than those shown in the table below or belt driven sheave applications, consult with the factory. In most cases, a minor modification of the VariTorque design or the sprocket/sheave will permit usage.


SPECIAL FINISHES

All VariTorque clutches are supplied with an electroless nickel finish. Special coatings, finishes or paints are also available.

CUSTOM VARIATIONS

- Sprockets or sheaves supplied and mounted
- Dimensional changes (i.e. overall length, actuating plate diameters)
- Bores and keyways (i.e. metric, non-standard)
- · Special adaptations

FIGURE 2

Operating Mode	Air Pressure	Limit Switch
Jog (Re-engagement)	Low	Open
Start	High	Closed
Run	Low	Closed
Stop	High	Closed
Overload (Disengagement)	Low	Open

The limit switch should be wired in its normally closed position

Refer to Boston Gear's Fluid Power Products Catalog for air preparation and control products.

MINIMUM ACCEPTABLE PLATE SPROCKET MOUNTS

			Chain Size and Pitch								
Clu	ıtch	#35	#40	#41	#50	#60	#80	#100	#120	#140	#160
Si	ze	3/8	1/2	1/2	5/8	3/4	1	1-1/4	1-1/2	1-3/4	2
		Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch
1	1	45	34	35	28	24	19	16	14	12	_
1	3	60	45	45	36	31	24	20	17	16	14

Boston Gear will also supply and mount sprockets or sheaves, as specified, for a complete package.


VARITORQUE PNEUMATIC OVERLOAD CLUTCHES

TORQUE LIMITER APPLICATION DATA

FAX TO 704-688-7403

Please select your product intent below and provide as much application information as possible.

1. Application: New Existing - Replacement Model #	6. Shut Down Method: Prox Plate Pin Style (ORC only)
 2. Power transmission requirements at clutch location: Horsepower RPM Limiting Torque Level 	Use the space below to note any relevant application data or to detail your question.
3. Type: Mechanical Pneumatic	
4. Type: □ Fully Automatic □ Manual □ Semi Automatic (ORC model only)	
5. Method of Torque Transmission: □ Flexible Coupling □ Rigid Coupling □ Sprocket Mount □ Other:	

SECTION CONTENTS

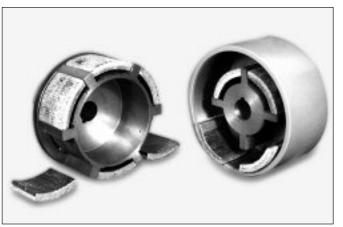
FEATURES	76
OPERATING PRINCIPLES	77
SELECTION	77
AVAILABLE STYLES	78
AVAILABLE TYPES	.80
OVERLOAD DETECTION	.80
SELECTION GUIDE	81

CENTRIC CENTRIFUGAL CLUTCHES CCC SERIES

FEATURES

- Automatic engagement and disengagement
- Delayed engagement produces a "no load start"
- No slippage at full running speed
- Controlled soft-start acceleration
- 100% efficient at rated speed
- Standard, spring control, and deep pocket models
- Protection against shock loads during start-up
- Custom clutches can be designed to be RPM limiters or a "brake" on a runaway system

WHY ARE THEY USED?


The Boston Gear Centric Centrifugal Clutch offers many advantages in motor and engine drive applications. Utilizing the centrifugal clutch enables the selection of normal torque motors for running loads rather than the selection of high torque motors for starting loads. The centrifugal clutch also sharply reduces the motor starting current requirements and heat losses inherent in the direct starting of a drive. This adds up to reduced power factors, greater efficiency and therefore, greater economy in motor drives.

When used with engine drives, the spring controlled centrifugal clutch allows the engine to warm up before starting the load or to stand by at an idling speed. Thus the spring controlled centrifugal clutch is used to great advantage in such applications as dual drives and engine driven pumping systems. This style clutch can also be used with turbines where a warm up period is necessary.

On any drive, the Boston Gear Centric Centrifugal Clutch provides protection against the shock loads which occur in the starting of a rigidly coupled drive. In many cases these loadings are capable of seriously damaging components of the drive and often expensive safety factors have to be designed into the machinery to protect against these loadings. The use of a centrifugal clutch eliminates these possibilities.

The use of a Boston Gear Centric Centrifugal Clutch allows the designer of a particular drive complete flexibility in clutch selection as each clutch is fabricated to order. Friction shoes of specific weights are custom designed therefore, any capacity within a particular clutch size can be obtained. The same holds true in the case of the spring controlled clutch. This style of clutch is designed to provide the specific engagement or disengagement speeds required by a specific application.

STANDARD STYLE

SPRING CONTROLLED STYLE

For application assistance call 704-688-7324 or visit us at www.centricclutch.com

OPERATING PRINCIPLES

The Boston Gear Centric Centrifugal Clutch utilizes two basic force principles in its operation, centrifugal force and friction force. Centrifugal force is that force which tends to pull a rotating body away from its center of rotation. Friction force exists between any two bodies in contact where one of the bodies is trying to move relative to the other body.

Figure 1, a face view of a centrifugal clutch, shows the basic components of the device. The driver half or spider is mounted to the motor or engine shaft and the driven half is connected to the load either directly or by means of some indirect drive arrangement. The friction shoes are the connective element between the driver and driven.

When the drive is set in motion, the spider and the shoes start to rotate. The spider imposes a driving force (F_3) on the friction shoe as shown in Figure 2. The centrifugal force (F_1) developed by the rotary motion of the friction shoe impresses it against the drum creating a frictional force (F_2) between the shoe and the drum.

As the drive increases in speed, the centrifugal force increases and thereby frictional force increases. When the frictional force reaches sufficient magnitude, it overcomes the resistance of the load, and the clutch drives. At full load speed, the shoe is "locked" firmly against the drum and no slippage occurs.

In engine and turbine applications, where it is necessary to "warm up" before attempting to drive a load, a spring controlled clutch is utilized. Figure 3 shows a typical spring control shoe. Here, a flat spring is placed over pins which run through the base of the shoe. This spring is retained in slots which are milled in the legs of the spider creating additional forces (Fs) which are applied to the friction shoes. The thickness of the spring utilized determines at what speed the particular drive may idle while warming up. At this idling speed the centrifugal force (F1) developed by the rotation is not of sufficient magnitude to overcome the total spring force (2Fs) acting in the opposite direction on the friction shoe. As the speed of the drive increases above the point at which the spring forces (F_s) and the centrifugal force (F₁) are balanced, the shoe is pressed against the drum creating a friction force. The operation from this point on is as described above.

SELECTION

There are an infinite number of combinations of Boston Gear Centric Centrifugal Clutches. While operating on the same basic principles, every clutch is designed to suit a specific customer application. To assure that the appropriate clutch is selected, please complete the Selection Guide on Page 81 and fax it to Boston Gear.

Upon receipt, our application engineering department will review your requirements and return the optimal Boston Gear Centric Centrifugal Clutch design along with its dimensional drawings.

FIGURE 1

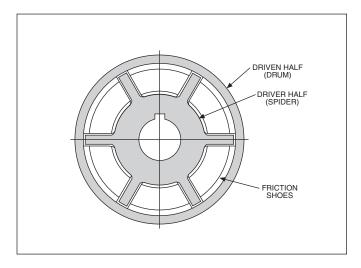


FIGURE 2

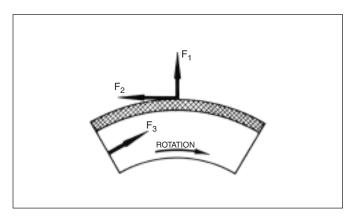
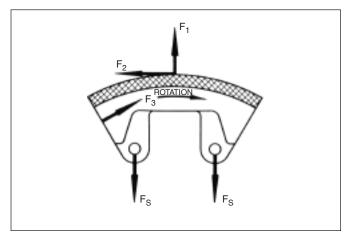
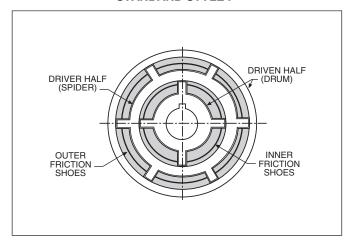



FIGURE 3



AVAILABLE STYLES

Boston Gear Centric Centrifugal Clutches are available for two basic applications: Styles F and J for electric motors and Style L for engines and turbines.

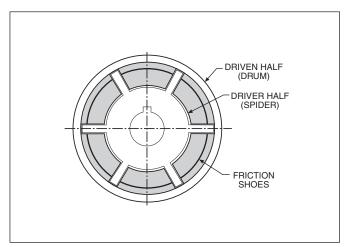

Standard Style F incorporates a shoe arrangement designed for electric motors, (Figure 4). As the motor comes up to speed, the outer friction shoes engage the driven half (the drum) and accelerate it. As it and the load come up to speed, the inner friction shoes engage the driver (the spider) locking up the drive.

FIGURE 4 STANDARD STYLE F

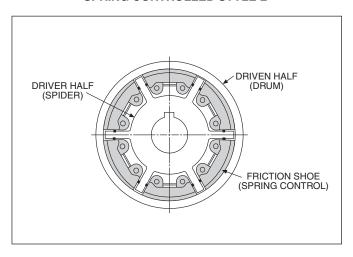

Where overload protection is required or greater capacity is needed in the drive, **Style J** containing deep pockets should be ordered, (Figure 5).

FIGURE 5
DEEP POCKET STYLE J

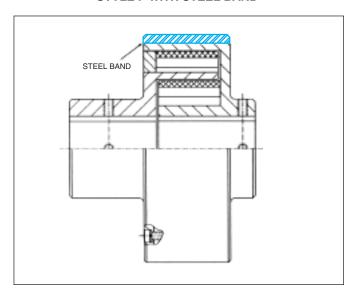
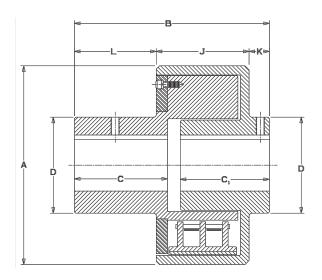

Style L incorporates a spring controlled shoe arrangement designed for engines, turbines, dual drives, or whenever a delayed engagement is desired, (Figure 6).

FIGURE 6
SPRING CONTROLLED STYLE L

For applications where either high speeds or large horsepower conditions exist, Styles G, K and M may be provided. These styles are identical to the models shown in Figures 4, 5 and 6, however they also incorporate steel bands wrapped around the housing helping to reduce stress, (Figure 7).

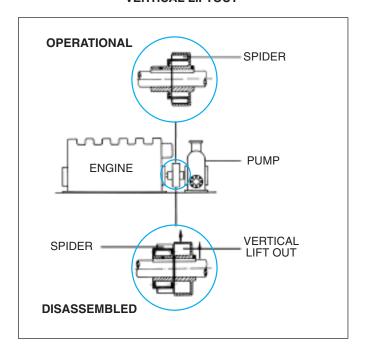

FIGURE 7 STYLE F WITH STEEL BAND

For application assistance call 704-688-7324 or visit us at www.centricclutch.com

TYPE A FREE STYLE AND SPRING-CONTROLLED CENTRIFUGAL CLUTCHES

Clutch	Maximum	Minimum	Wt. in Lbs.				DIME	ENSIONS	IN INCH	ES		
Coupling Sizes	Bore Inches	Bore Inches	with Max. Bore	Α	В	С	C ₁	D	J	K	L	HP*
5 x 1-1/2	1-3/8	3/4	15	5-3/8	4-11/16	2-3/16	2-7/16	2-1/2	2-3/16	5/8	1-13/16	40
6 x 2	1-5/8	3/4	25	6-1/2	6-1/4	2-15/16	3-3/16	3	3-1/16	3/4	2-7/16	92
7 x 2-1/2	1-7/8	1	40	7-5/8	7-1/4	3-7/16	3-11/16	3-3/8	3-9/16	3/4	2-15/16	125
10 x 3	2-7/8	1-1/4	100	10-13/16	8-13/16	4-1/8	4-9/16	5-1/8	4-3/16	1	3-5/8	215
12 x 4	3-1/2	1-1/2	200	13-1/8	11-3/8	5-1/2	5-11/16	6-1/4	5-1/2	1	4-7/8	356
16 X 5	4-3/4	2-1/2	400	17-3/8	13-3/4	6-3/4	6-13/16	8-1/2	6-5/8	1	6-1/8	562
24 x 8	7	3	1315	25-1/2	20-3/16	10	10	12-1/2	9-7/8	1-1/16	9-1/4	2280

^{*} The actual horsepower rating is largely dependent on RPM and may be higher or lower than the indicated HP. Contact engineering before finalizing clutch selection.

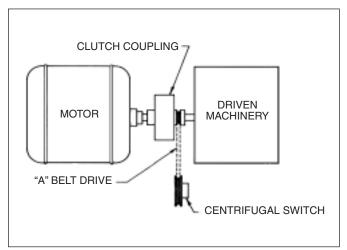

AVAILABLE TYPES

OVERLOAD DETECTION

Type A Centric Centrifugal Clutches are similar to standard coupling/clutch designs in that the installation and removal of the clutch requires horizontal clearance. This type of design may necessitate the relocation of other drive train components to achieve this clearance.

The Type V clutch is a modification of the basic Type A unit. This construction is utilized to a great advantage in direct drive applications where the equipment used is too heavy to be conveniently telescoped at assembly or disassembly. Figure 8 shows how either piece of equipment can be vertically lifted out of its assembled position. The Type V clutch construction allows the clutch spider to be slipped back over its own hub, completely clearing the clutch drum. If a Type A construction had been used here, it would have been necessary to first move the pump horizontally in order to clear the drum and spider before a vertical lift could have been accomplished. This horizontal movement is often not convenient and sometimes impossible such as in certain dual drives and of course where space limitations exist.

FIGURE 8 VERTICAL LIFTOUT



In Figure 9 a safety device is incorporated to indicate an overload condition. In such applications a centrifugal switch is utilized. The switch is set to trip below a certain critical RPM determined by the application, and in so doing, actuate a signal or shut down the drive, The illustration shows the most common method of using a centrifugal switch in conjunction with a Boston Gear centrifugal clutch. "A" groove sheaves are mounted on the driven member of the clutch and the centrifugal switch. These sheaves are of such a ratio as to allow the centrifugal switch to operate within its limits.

For example, a drive arrangement is set to turn at 1750 RPM. It is determined that the desired cut out speed for the application is at 1500 RPM. The centrifugal switch is set to trip at speeds below 750 RPM and normally will run at 875 RPM which, through a 2:1 ratio corresponds to the drive RPM of 1750.

In actual operation the drive is turning at 1750 RPM. An overload occurs in the driven machinery and the capacity of the clutch is exceeded. While the driver half is still turning at the 1750 RPM, the driven half is dragging due to the increased capacity and drops below the 1500 RPM speed. The switch is actuated by this decrease in speed and an alarm is sounded or the drive is shut down.

FIGURE 9

SELECTION GUIDE

To select or order a Boston Gear Centric Centrifugal Clutch, please complete the following information and fax this form to Product Support at 704-688-7403.

GENERAL INFORMATION

Company		
Address	City	State
Contact Person	Tel. No.	Fax No.
APPLICATION DATA		
1. Drive method: ☐ Electric Motor ☐ Engine/	Turbine 🗆 Other	
2. Method of drive: \Box Direct \Box Indirect (provide	e sketch)	
3. Power transmission requirements at clutch location	n:	
HorsepowerRPI	M	
4. Type: ☐ Standard (A) ☐ Vertical Lift-Out (V)		
5. Speeds (required for engines, turbines, dual drive	s):	
Idling RPM Engagement	RPM Disengageme	nt RPM
6. Bores: Driver (input) inches	Driver (output)	inches
7. Service Factor Required:		
Use the space below to sketch any relevant applicat	ion data:	

-		
·	 	 ·

SECTION CONTENTS

BORE CODES	84
CLUTCH LOCATION	85
SERVICE FACTORS	86
APPLICATION FORMULAS	88
HORSEPOWER AND TORQUE	89
METRIC CONVERSION	91
TERMS AND CONDITIONS	92

BORE CODES

Use the appropriate bore code shown below to designate the bore diameter (in inches) for the clutch's unit and coupling.

Bore Size	Bore Size	Bore
(Fraction)	(Decimal)	Code
1/8	0.1250	P02
3/16	0.1875	P03
1/4	0.2500	P04
5/16	0.3125	P05
3/8	0.3750	P06
7/16	0.4375	P07
1/2	0.5000	P08
9/16	0.5625	P09
5/8	0.6250	P10
11/16	0.6875	P11
3/4	0.7500	P12
13/16	0.8125	P13
7/8	0.8750	P14
15/16	0.9375	P15
11	1.0000	P16
1-1/16	1.0625	P17
1-1/8	1.1250	P18
1-3/16	1.1875	P19
1-1/4	1.2500	P20
1-5/16	1.3125	P21
1-3/8	1.3750	P22
1-7/16	1.4375	P23
1-1/2	1.5000	P24
1-9/16	1.5625	P25
1-5/8	1.6250	P26
1-11/16	1.6875 1.7500	P27
1-3/4 1-13/16		P28 P29
1-13/16	1.8125 1.8750	P30
1-7/6	1.9375	P31
2	2.0000	P32
2-1/16	2.0625	P33
2-1/10	2.1250	P34
2-3/16	2.1875	P35
2-1/4	2.2500	P36
2-5/16	2.3125	P37
2-3/8	2.3750	P38
2-7/16	2.4375	P39
2-1/2	2.5000	P40
2-9/16	2.5625	P41
2-5/8	2.6250	P42
2-11/16	2.6875	P43
2-3/4	2.7500	P44
2-13/16	2.8125	P45
2-7/8	2.8750	P46
2-15/16	2.9375	P47
3	3.0000	P48
3-1/16	3.0625	P49
3-1/8	3.1250	P50
3-3/16	3.1875	P51
3-1/4	3.2500	P52
3-5/16	3.3125	P53
3-3/8	3.3750	P54
3-7/16	3.4375	P55
3-1/2	3.5000	P56

Bore Size	Bore Size	Bore
(Fraction)	(Decimal)	Code
3-9/16	3.5625	P57
3-5/8	3.6250	P58
3-11/16	3.6875	P59
3-3/4	3.7500	P60
3-13/16 3-7/8	3.8125 3.8750	P61 P62
3-15/16	3.9375	P63
3-13/10	4.0000	P64
4-1/16	4.0625	P65
4-1/8	4.1250	P66
4-3/16	4.1875	P67
4-1/4	4.2500	P68
4-5/16	4.3125	P69
4-3/8	4.3750	P70
4-7/16	4.4375	P71
4-1/2	4.5000	P72
4-9/16	4.5625	P73
4-5/8	4.6250	P74
4-11/16	4.6875	P75
4-3/4	4.7500	P76
4-13/16	4.8125	P77
4-7/8 4-15/16	4.8750 4.9375	P78 P79
4-15/16 5	5.0000	P80
5-1/16	5.0625	P81
5-1/8	5.1250	P82
5-3/16	5.1875	P83
5-1/4	5.2500	P84
5-5/16	5.3125	P85
5-3/8	5.3750	P86
5-7/16	5.4375	P87
5-1/2	5.5000	P88
5-9/16	5.5625	P89
5-5/8	5.6250	P90
5-11/16	5.6875	P91
5-3/4	5.7500	P92
5-13/16	5.8125	P93 P94
5-7/8 5-15/16	5.8750 5.9375	P94 P95
6	6.0000	P96
6-1/16	6.0625	P97
6-1/8	6.1250	P98
6-3/16	6.1875	P99
6-1/4	6.2500	P100
6-5/16	6.3125	P101
6-3/8	6.3750	P102
6-7/16	6.4375	P103
6-1/2	6.5000	P104
6-9/16	6.5625	P105
6-5/8	6.6250	P106
6-11/16	6.6875	P107
6-3/4	6.7500	P108
6-13/16	6.8125	P109
6-7/8	6.8750	P110
6-15/16 7	6.9375 7.0000	P111 P112
1	7.0000	1 112

STANDARD KEYWAYS

Bore Range (Inch)	Square
Over - To	WxD
5/16 - 7/16	3/32 x 3/64
7/16 - 9/16	1/8 x 1/16
9/16 - 7/8	3/16 x 3/32
7/8 - 1-1/4	1/4 x 1/8
1-1/4 - 1-3/8	5/16 x 5/32
1-3/8 - 1-3/4	3/8 x 3/16
1-3/4 - 2-1/4	1/2 x 1/4
2-1/4 - 2-3/4	5/8 x 5/16
2-3/4 - 3-1/4	3/4 x 3/8
3-1/4 - 3-3/4	7/8 x 7/16
3-3/4 - 4-1/2	1 x 1/2
4-1/2 - 5-1/2	1-1/4 x 5/8
5-1/2 - 6-1/2	1-1/2 x 3/4
6-1/2 - 7-1/2	1-3/4 - 7/8

Square keyways will be furnished unless otherwise specified or noted in catalog.

Keys will be furnished with bores which require reduced keys.

BORE TOLERANCES (Inch)

Diameter	Tolerance
0 to 1	+.0005/0000
1 to 3	+.0010/0000
3 and up	+.0020/0000

CLUTCH LOCATION

LOCATION

The clutch should always be located as close as possible to the potential source of an overload condition. Figures 1 through 4 indicate both preferred and non-preferred locations for mounting an Overload Release clutch.

Note:

Clutch mounted sprockets, etc. and couplings should be positioned as close to a supporting bearing as possible to minimize overhung loads. A minimum shaft engagement of 1-1/2 times the shaft diameter is recommended for clutch and coupling flange installation.

DIRECT DRIVES

Figure 1 shows the **preferred** location for mounting in a direct drive application. The clutch is mounted on the low speed side of the reducer, and transmits power from its housing, through its rotor to the driven shaft.

Locating the clutch as shown in Figure 2 is **not preferred.** Here the clutch is mounted on the high-speed side of the reducer. Generally, mounting in this manner requires the clutch to be hypersensitive to perform satisfactorily.

INDIRECT DRIVES

Either location of the clutch shown in Figure 3 is **preferred** in indirect drive applications, with the overload protection on the slow speed side of the reducer.

The mounting location in Figure 4 is **not preferred** for the same reasons as those for Figure 2. Always consult the factory when a mounting of this type is necessary.

FIGURE 1 DIRECT DRIVE PREFERRED

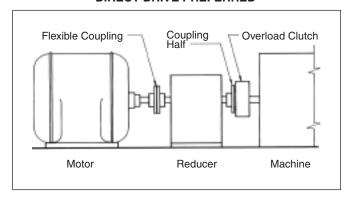


FIGURE 2
DIRECT DRIVE NOT PREFERRED

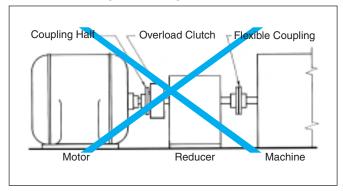


FIGURE 3
INDIRECT DRIVE PREFERRED

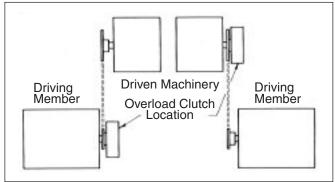
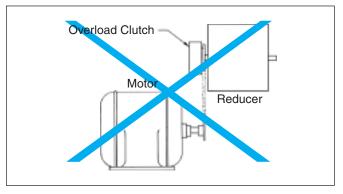



FIGURE 4
INDIRECT DRIVE NOT PREFERRED

APPLICATION CLASSIFICATION FOR VARIOUS LOADS

	Char	t I For All D	rives
	Service Factor Loading		
Type of Machine	Not More	Not More	More
To Be Driven	Than 15	Than 10	Than
	Mins. in	Hrs. per	10 Hrs.
	2 Hrs.	Day	Per Day
AGITATORS			
Pure Liquid	0.80	1.00	1.25
Semi-Liquids, Variable Density	1.00	1.25	1.50
BLOWERS			
Centrifugal and Vane	0.80	1.00	1.25
Lobe	1.00	1.25	1.50
BREWING AND DISTILLING			
Bottling Machinery	0.80	1.00	1.25
Brew Kettles–Continuous Duty	_	_	1.25
Cookers – Continuous Duty	_	_	1.25
Mash Tubs – Continuous Duty	_	_	1.25
Scale Hopper – Frequent Starts	_	1.25	1.50
CAN FILLING MACHINES	_	1.00	_
CANE KNIVES	_	1.50	_
CAR DUMPERS	_	1.75	_
CAR PULLERS	_	1.25	-
CLARIFIERS	_	1.00	1.25
CLASSIFIERS	_	1.25	1.50
CLAY WORKING MACHINERY			
Brick Press & Briquette Machine	_	1.75	2.00
Extruders and Mixers	1.00	1.25	1.50
COMPRESSORS			
Centrifugal	_	1.00	1.25
Lobe – Reciprocating, Multi-Cycle	_	1.25	1.50
Reciprocating – Single Cycle	_	1.75	2.00
CONVEYORS—			
UNIFORMLY LOADED & FED			
Apron	_	1.00	1.25
Assembly-Belt – Bucket or Pan	_	1.00	1.25
Chain – Flight	_	1.00	1.25
Oven – Live Roll – Screw	_	1.00	1.25
CONVEYORS—HEAVY DUTY NOT UNIFORMLY FED			
		1.25	1.50
Apron Assembly-Belt – Bucket or Pan	_	1.25	1.50
Chain – Flight	_	1.25	1.50
Live Roll	_	_	_
Oven – Screw	_	1.25	1.50
Reciprocating – Shaker	_	1.75	2.00
CRANES AND HOISTS			
Main Hoists			
Bridge and Trolley Drive	*	1.00	1.25
CRUSHERS			
Ore, Stone	_	1.75	2.00
Sugar	_	1.50	1.50
9			

APPLICATION CLASSIFICATION FOR VARIOUS LOADS (Continued)

	Chart I For All Drives		
	Service Factor Loading		
Type of Machine	Not More	Not More	More
To Be Driven	Than 15	Than 10	Than
	Mins. in	Hrs. per	10 Hrs.
	2 Hrs.	Day	Per Day
MIXERS			
Concrete – Continuous	_	1.25	1.50
Concrete – Intermittent	_	1.25	1.50
Constant Density	_	1.00	1.25
Semi-Liquid	_	1.25	1.50
OIL INDUSTRY			
Oil Well Pumping	_	_	*
Chillers, Paraffin Filter Press	_	1.25	1.50
Rotary Kilns	_	1.25	1.50
PAPER MILLS			
Agitator (Mixer)	_	1.25	1.50
Agitator – Pure Liquids	_	1.00	1.25
Barking Drums – Mechanical Barkers	_	1.75	2.00
Bleacher		1.75	1.25
Beater	_	1.25	1.50
Calender Heavy Duty	_	_	2.00
Calender Anti-Friction Brgs.	_	1.00	1.25
Cylinders	_	1.25	1.50
Chipper	_	_	2.00
Chip Feeder	_	1.25	1.50
Coating Rolls - Couch Rolls	_	1.00	1.25
Conveyors - Chips - Bark -			
Chemical	-	1.00	1.25
Conveyors – Log and Slab	_	_	2.00
Cutter	_	_	2.00
Cylinder Molds, Dryers (Anti-Friction Brg.)			1.25
Felt Stretcher		1.25	1.50
Screens - Chip and Rotary	_	1.25	1.50
Thickener (AC)	_	1.25	1.50
Washer (AC)	_	1.25	1.50
Winder – Surface Type	_	_	1.25
PLASTICS INDUSTRY			
Intensive Internal Mixers			
Batch Type	_	_	1.75
Continuous Type	_	_	1.50
Batch Drop Mill – 2 Rolls	_	_	1.25
Compounding Mills	_	_	1.25
Calenders Extrader Variable Cased	_	_	1.50
Extruder – Variable Speed	_	_	1.50
Extruder – Fixed Speed PULLERS	_	_	1.75
			2.00
Barge Haul	_	_	2.00

	Chart I For All Drives		
	Service Factor Loading		
Type of Machine To Be Driven	Not More Than 15 Mins. in 2 Hrs.	Not More Than 10 Hrs. per Day	More Than 10 Hrs. Per Day
PUMPS		-	-
Centrifugal Proportioning Reciprocating	_ _	_ _	1.25 1.50
Single Acting, 3 or more Cycles Double Acting,	_	1.25	1.50
2 or more Cycles Rotary – Gear or Lube	_ _	1.25 1.00	1.50 1.25
RUBBER INDUSTRY Batch Mixers	_		1.75
Continuous Mixers	_	_	1.75
Calenders Extruders – Continuous	_ _	_ _	1.50 1.50
Extruders – Intermittent Tire Building Machines	_ _	_	1.75 —
Tire & Tube Press Openers SEWAGE DISPOSAL EQUIPMENT	_	_	_
Bar Screens	_	1.00	1.25
Chemical Feeders Collectors	_ _	1.00 1.00	1.25 1.25
Dewatering Screws	_	1.25	1.50
Scum Breakers	_	1.25 1.25	1.50
Slow or Rapid Mixers Thickeners	_	1.25	1.50 1.50
Vacuum Filters SCREENS	_	1.25	1.50
Air Washing	_	1.00	1.25
Rotary – Stone or Gravel Traveling Water Intake	_ _	1.25 1.00	1.50 1.25
SKIP HOISTS SLAB PUSHERS	_	— 1.25	— 1.50
STOKERS	_		1.25
TEXTILE INDUSTRY			
Batchers or Calenders	_	1.25	1.50
Cards Card Machines	_	1.25	1.50
Dry Cans and Dryers	_	1.75 1.25	2.00 1.50
Dyeing Machines	_	1.25	1.50
Looms	_	1.25	1.50
Mangles, Nappers and Pads	_	1.25	1.50
Soapers, Tenner Frames Spinners, Washers, Winders	_	1.25 1.25	1.50 1.50
TUMBLING BARRELS	1.50	1.75	2.00
WINDLASS	_	1.25	1.50

This list is not all-inclusive and each application should be checked to determine if any unusual operating conditions will be encountered.

APPLICATION FORMULAS

TO OBTAIN	HAVING	FORMULA
Velocity (V) Feet Per Minute	Pitch Diameter (D) of Gear or Sprocket - Inches and Revolutions Per Minute (RPM)	V = .2618 x D x RPM
Revolutions Per Minute (RPM)	Velocity (V) Feet Per Minute and Pitch Diameter (D) of Gear or Sprocket - Inches	RPM = V .2618 x D
Pitch Diameter (D) of Gear or Sprocket	Velocity (V) Feet Per Minute and Revolutions Per Minute (RPM)	$D = \frac{V}{.2618 \times RPM}$
Torque (T) In. Lbs.	Force (W) Lbs. and Radius (R) Inches	T = W x R
Horsepower (HP)	Force (W) Lbs. and Velocity (V) Feet Per Minute	$HP = \frac{W \times V}{33000}$
Horsepower (HP)	Torque (T) In. Lbs. and Revolutions Per Minute (RPM)	$HP = \frac{T \times RPM}{63025}$
Torque (T)	Horsepower (HP) and Revolutions Per Minute (RPM)	$T = \frac{63025 \times HP}{RPM}$
Force (W) Lbs.	Horsepower (HP) and Velocity (V) Feet Per Minute	$W = \frac{33000 \times HP}{V}$
Revolutions Per Minute (RPM)	Horsepower (HP) and Torque (T) In. Lbs.	RPM = \frac{63025 \times HP}{T}

HORSEPOWER AND TORQUE

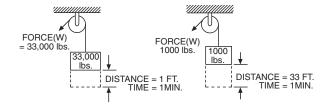
POWER is the rate of doing work.

WORK is the exerting of a FORCE through a DISTANCE. ONE FOOT POUND is a unit of WORK. It is the WORK done in exerting a FORCE OF ONE POUND through a DISTANCE of ONE FOOT.

THE AMOUNT OF WORK done (Foot Pounds) is the FORCE (Pounds) exerted multiplied by the DISTANCE (Feet) through which the FORCE acts.

THE AMOUNT OF POWER used (Foot Pounds per Minute) is the WORK (Foot Pounds) done divided by the TIME (Minutes) required.

POWER (Foot Pounds per Minute) = $\frac{\text{WORK (Ft. Lbs.)}}{\text{TIME (Minutes)}}$


POWER is usually expressed in terms of HORSEPOWER.

HORSEPOWER is POWER (Foot Pounds per Minute) divided by 33,000.

HORSEPOWER (HP)

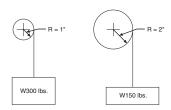

- = POWER (Ft. Lbs. per Minute) 33,000
- = WORK (Ft. Pounds) 33,000 x TIME (Min.)
- = FORCE (Lbs.) x DISTANCE (Feet) 33,000 x TIME (Min.)

ILLUSTRATION OF HORSEPOWER

$$HP = \frac{33,000 \times 1}{33,000 \times 1} = 1 HP \qquad HP = \frac{1000 \times 33}{33,000 \times 1} = 1 HP$$

TORQUE (T) is the product of a FORCE (W) in pounds, times a RADIUS (R) in inches from the center of shaft (Lever Arm) and is expressed in Inch Pounds.

$$T = WR$$
 $T = WR$ $= 300 x 1 = 300 ln. Lbs.$ $T = WR$ $= 150 x 2 = 300 ln. Lbs.$

If the shaft is revolved, the FORCE (W) is moved through a distance, and WORK is done.

WORK (Ft. Lbs.) = W x
$$\frac{2\pi R}{12}$$
 x No. of Rev. of shaft

When WORK is done in a specified TIME, POWER is used.

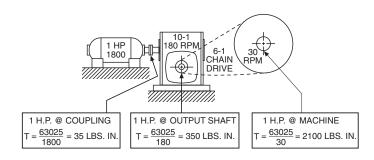
POWER (Ft. Pounds per Minute) = W x
$$\frac{2\pi R}{12}$$
 x RPM

Since (1) HORSEPOWER = 33,000 Ft. Pounds per Minute

Horsepower (HP) = W x
$$\frac{2\pi R}{12}$$
 x $\frac{RPM}{33,000}$ = $\frac{W \times R \times RPM}{63,025}$

but TORQUE (Inch Pounds) = FORCE (W) x RADIUS (R)

Therefore HORSEPOWER (HP) =
$$\frac{\text{TORQUE (T) x RPM}}{63,025}$$

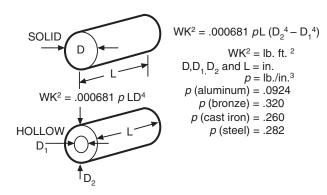

Where total reductions are small, 50 to 1 or less, HP figures are commonly used. Higher reductions require that TORQUE figures be used to select drive components, because with large reductions, a small motor can produce extremely high TORQUE at the final low speed. For example, 1/12 HP reduced to 1 RPM using the formula below and neglecting friction:

$$\mathsf{HP} = \frac{\mathsf{TORQUE} \ \mathsf{x} \ \mathsf{RPM}}{\mathsf{63,025}} \ \mathsf{or} \ \ \mathsf{TORQUE} \ = \frac{\mathsf{63,025} \ \mathsf{x} \ \mathsf{HP}}{\mathsf{RPM}}$$

TORQUE =
$$\frac{63,025 \times 1/12}{1}$$
 = 5,252 In. Lbs.

Therefore, motors for use with large reductions should be carefully selected. Even a small motor, if stalled, can produce enough Torque to ruin the drive, unless it is protected by an overload clutch.

Neglecting frictional losses, this sketch illustrates the manner in which Torque increases as speed decreases.


HORSEPOWER AND TORQUE (Continued)

INERTIA (WK²)

The factor WK² is the weight (lbs) of an object multiplied by the square of the radius of gyration (K). The unit measurement of the radius of gyration is expressed in feet.

For solid or hollow cylinders, inertia may be calculated by the equations shown below.

The inertia of solid steel shafting per inch of shaft length is given in the table. To calculate for hollow shafts, take the difference between the inertia values for the O.D. and I.D. as the value per inch. For shafts of materials other than steel, multiply the value for steel by the appropriate material factor.

 WK^2 of Rotating Elements – In practical mechanical systems, all the rotating parts do not operate at the same speed. The WK^2 of all moving parts operating at each speed must be reduced to an equivalent WK^2 at the motor shaft, so that they can all be added together and treated as a unit, as follows:

Equivalent WK² = WK²
$$\left[\frac{N}{N_M}\right]^2$$

Where, $WK^2 = Inertia of the moving part$

N = Speed of the moving part (RPM)

 N_M = Speed of the driving motor (RPM)

When using speed reducers, and the machine inertia is reflected back to the motor shaft, the equivalent inertia is equal to the machine inertia divided by the square of the drive reduction ratio.

Equivalent WK² =
$$\frac{WK^2}{(DR)^2}$$

Where, DR = drive reduction ratio = $\frac{N_{\text{M}}}{N_{\text{L}}}$

INERTIA OF STEEL SHAFTING (PER INCH OF LENGTH)

(
Diam. (In.)	WK ² (Lb. Ft. ²)	Diam. (In.)	WK ² (Lb. Ft. ²)		
3/4	0.00006	10-1/2	2.35		
1	0.0002	10-3/4	2.58		
1-1/4	0.0005	11	2.83		
1-1/2	0.001	11-1/4	3.09		
1-3/4	0.002	11-1/2	3.38		
2	0.003	11-3/4	3.68		
2-1/4	0.005	12	4.00		
2-1/2	0.008	12-1/4	4.35		
2-3/4	0.011	12-1/2	4.72		
3	0.016	12-3/4	5.11		
3-1/2	0.029	13	5.58		
3-3/4	0.038	13-1/4	5.96		
4	0.049	13-1/2	6.42		
4-1/4	0.063	13-3/4	6.91		
4-1/2	0.079	14	7.42		
5	0.120	14-1/4	7.97		
5-1/2	0.177	14-1/2	8.54		
6	0.250	14-3/4	9.15		
6-1/4	0.296	15	9.75		
6-1/2	0.345	16	12.59		
6-3/4	0.402	17	16.04		
7	0.464	18	20.16		
7-1/4	0.535	19	25.03		
7-1/2	0.611	20	30.72		
7-3/4	0.699	21	37.35		
8	0.791	22	44.99		
8-1/4	0.895	23	53.74		
8-1/2	1.000	24	63.71		
8-3/4	1.130	25	75.02		
9	1.270	26	87.76		
9-1/4	1.410	27	102.06		
9-1/2	1.550	28	118.04		
9-3/4	1.750	29	135.83		
10	1.930	30	155.55		
10-1/4	2.130	—	—		

MATERIAL FACTORS

Shaft Material	Factor			
Rubber	.121			
Nylon	.181			
Aluminum	.348			
Bronze	1.135			
Cast Iron	.922			

Formulas to Approximate WK²

For a solid cylinder or disc = W x $\frac{r^2}{2}$

where r = radius in feet and W is weight in pounds.

For a hollow cylinder: WK² x $\frac{W_1^2 + r_2^2}{2}$

where r_1 , is $\frac{1D}{2}$ and r_2 is $\frac{OD}{2}$.

METRIC CONVERSION CHART

MULTIPLY	BY	TO OBTAIN	MULTIPLY	ВҮ	TO OBTAIN	
LENGTH		TORQUE				
Millimeter	.03937	Inch	Newton-meter	8.84	Lb. ln.	
Centimeter	.3937	Inch	Lb. In.	.113	Newton-Meter	
Meter	39.37	Inch	Lb. Ft.	1.3558	Newton-Meter	
Inch	2.54	Centimeter	Lb. Ft.	12	Lb. In.	
Feet	30.48	Centimeter	LD. Ft.			
Feet	.3048	Meter		MOMENT OF INERTIA		
	WEIGHT	Г	Newton-Meters ²	2.42	Lb. Ft.²	
Gram	.03527	Ounce	OzIn.²	.000434	Lb. Ft. ²	
Kilogram	35.27	Ounce	LbIn. ²	.00694	Lb. Ft. ²	
Kilogram	2.205	Pounds	Slug-Ft. ²	32.17	Lb. Ft. ²	
Ounce	28.35	Grams	OzInSec. ²	.1675	Lb. Ft. ²	
Pound	453.6	Grams	LbInSec. ²	2.68	Lb. Ft. ²	
	ROTATIO	N	LD. III. CCC.			
RPM	.1047	Rad./Sec.		POWEF	₹	
RPM	6.00	Degrees/Sec.	Joule/sec	.001341	Horsepower	
Degrees/Sec.	.1667	RPM	Kilocalorie/hour	3.967	BTW/Hour	
Rad./Sec	9.549	RPM	Horsepower	.33000	Lb. Ft./Min.	
	VELOCIT	-Y	Horsepower	746	Watts	
Centimeter/second	.3937	Inches/Second	BTU/hour	.2521	Kilocalorie/Hour	
Centimeter/second	1.969	Feet/Minute	Watts	.00134	Horsepower	
Meter/second	3.281	Feet/Second		AREA		
Meter/second	196.9	Feet/Minute	Millimeters ²	.00155	Inches ²	
Meter/second	2.237	Miles per hour				
Inch/second	25.4	Millimeters/Second	Centimeters ²	.155	Inches ²	
Inch/second	2.54	Centimeters/Second	Meters ²	10.76	Feet ²	
Foot/second	.3048	Meters/Second	Inches ²	645.16	Millimeters ²	
Foot/minute	.00508	Meters/Second	Inches ²	6.452	Centimeters ²	
	VOLUME		Feet ²	929.03	Centimeters ²	
Centimeter ³	.0610	Inches³	Feet ²	.0929	Meters ²	
Centimeter³	.034	Fluid Ounce	DENSITY		Υ	
Liter	61.02	Inches ³	lg/cm³	.03613	Lb/In³	
Liter	.0353	Feet ³				
Liter	.264	U.S. Gallon	Ig/cm³	62.43	Lb/Ft³	
Inch ³	16.39	Centimeter³	lb/in ³	27.68	Gr/Cm³	
Feet ³	28.32	Liter	lb/ft³	.016	G/Cm ³	
Gallon	3.785	Liter	lb/ft³	16.02	Kg/M³	

For application assistance call 704-688-7324 or visit us at www.centricclutch.com

TERMS AND CONDITIONS

ALL QUOTATIONS AND SALES BY BOSTON GEAR, THE CONTRACTING PARTY HERETO, HEREAFTER CALLED "COMPANY" ARE MADE ON THE FOLLOWING TERMS AND CONDITIONS.

1. QUOTATIONS and THEIR ACCEPTANCE

Unless otherwise specified, quotations on stock products are for immediate acceptance, subject to prior sales. Quotations on special products are made subject to acceptance within thirty (30) days from date thereof, but in making such quotations, the Company reserves the right to change or cancel them at any time prior to the receipt of the customers' written acceptance. All quotations for special products are based upon supplying up to plus or minus 5% of quantity ordered unless otherwise stated in the quotation. All quotations are made F.O.B. shipping point.

2. PRICES

Prices are in accordance with current Company price lists, are based on quantity specified and are subject to minimum order requirements of the Company. In the event the Company consents to the cancellation or suspension of orders, it shall be entitled to charge for work done and material ordered or used up to the time of giving its written consent to such cancellation or suspension. When work is to be done on material furnished by the customer, prices are based on the quantity specified being delivered by the customer at one time within a reasonable time after acceptance of order. Quotations will be made on special products of all types or on cutting only. Prices, specifications, and terms and conditions, as well as all statements appearing in the Company's catalogs and advertisements, and made elsewhere by the Company are subject to change without notice. Changes by the customer in specifications or delivery requirements will be subject to change in price. Whenever the net price of an order amounts to less than \$25.00, a minimum charge of \$25.00 will be made.

3. CREDIT TERMS

To those customer and prospective customers whose credit is satisfactory to the Company, terms are net thirty (30) days, from date of invoice, with the option of paying semi-monthly. The Company may at any time when, in its opinion, the financial condition of the customer or prospective customer warrants it, either alter or suspend credit, or discontinue deliveries, and render a charge covering the value of any partially finished special products which are then being manufactured for the customer. In those instances where credit is not established, and in cases where satisfactory references are not given, the terms are cash with order. For special products in those instances where credit is not established to the satisfaction of the Company, a deposit of at least 50% of total value of the order is required. Remittances should be made by check or money order, payable to the Boston Gear, Quincy, Massachusetts 02171, U.S.A. Delays in transportation shall not exceed the terms of payment.

4. MATERIAL FURNISHED by THE CUSTOMER

Unless otherwise specified, quotations are based on material furnished by the customer being of ordinary hardness, normal allowance for finish, uniform specification, and machine work being of ordinary commercial accuracy. If material furnished by the customer involves the Company in expense not contemplated by the contract, the customer will be charged for all such additional expense. If serious defects are found in the material furnished by the customer, the customer will be charged for the actual work done. The Company assumes no responsibility for, and will not be liable for loss of or damage to samples, blueprints, diagrams, and other material of any nature submitted or furnished by the customer or prospective

customer, provided the Company has exercised reasonable care in the handling of the same. The Company does not assume transportation and insurance costs on any of the foregoing items. In all cases where the customer or prospective customer makes no statement in writing, concerning the disposition of any of the foregoing material when submitted, the Company reserves the right to dispose of such material according to its best judgment.

5. DIMENSIONS

When dimensions of rims, bores, and hubs are not clearly specified, quotations are based on ordinary dimensions. Before the customer's blanks are accepted by the Company for cutting, the diameter, holes, rims, and ends of holes must be finished; for bevel gears, hubs, must be of uniform length. There should also be an allowance of extra blanks to cover possible spoilage. Unless otherwise specified, dimensions are in inches.

6. SAMPLES

In no case are samples furnished free. If agreed to by the Company, a few products in advance of a regular quantity order will be furnished but only at an agreed upon price over the regular quantity price.

7. TAXES

If any tax is at any time levied or imposed by the federal or any state or local government, or any other taxing authority, upon the products covered hereby, or in respect of the production, processing, manufacture, storage, sale, use, or consumption thereof, or, in the case of goods delivered at the Company's expense, upon the transportation thereof, including freight charges thereon, the amount of such tax shall be added to the purchase price above specified and shall be borne by the customer. The Company will accept a valid exemption certificate from the customer if applicable; however, if any exemption certificate previously accepted it not recognized by the taxing authority involved and the Company is required to pay the tax covered by such exemption certificate, the customer shall be required to promptly reimburse the Company for the taxes so paid.

8. SHIPMENTS

All shipments are made F.O.B. shipping point (subject to freight allowance under conditions stated in separate price schedules). When ordering, the customer's desired method of shipment must be clearly stated. Where instructions for shipping do not appear on the order, shipment will be made according to the Company's best judgment. Full risk of loss (including transportation delays and losses) shall pass the customer upon delivery of the products to F.O.B. point. Unless otherwise instructed, all Parcel Post shipments are insured at the customers' expense. Parcel Post shipments without insurance are at the customer's risk. Deliveries by Messenger Service to a terminal are made at the customer's risk and expense. Partial shipments shall be permitted and the Company may invoice each shipment separately.

9. REFUSAL of SHIPMENT

In case of the refusal or inability of the customer to accept any shipment in accordance with the terms of the order, the customer shall be liable for freight, express, storage, extra cost of handling and all other expenses incurred by the Company as a result of such refusal or inability.

ALL QUOTATIONS AND SALES BY BOSTON GEAR, THE CONTRACTING PARTY HERETO, HEREAFTER CALLED "COMPANY" ARE MADE ON THE FOLLOWING TERMS AND CONDITIONS.

10. DELAY or NONPERFORMANCE

The Company shall not be liable for any delay or loss of any nature or failure in performance due to or caused by fire, flood, strike, or other differences with workmen, accidents, labor or material or transportation shortages, war (declared or undeclared), insurrection, riot, or by any governmental orders or regulations, legal interferences or prohibitions, defaults on the part of suppliers or other causes beyond the Company's reasonable control.

11. CLAIMS and REJECTED MATERIAL

Any products which have been altered or damaged are not returnable except with the Company's written consent. To reject products on inspection as defective, customer must notify the Company in writing within ten (10) days from receipt of the products. Before allowing or rejecting claim, the Company shall then have the option of reinspection at the customer's plant or its own. Defects that do not impair service shall not be a cause for rejection. The Company shall have the right to replace within a reasonable time any product or products which in its opinion do not conform to the order. No claim will be allowed for any products damaged by the customer or damaged in transit. Expenses incurred in connection with claims for which the Company is not liable, will be charged to the customer. The Company will not be responsible for any work done to correct errors unless such work is authorized by the written consent of the Company. The Company assumes no liability for any claim for infringement of any foreign or domestic patent.

12. LIMITED WARRANTY

The Company warrants that products manufactured or sold by it shall be free from defects in material and workmanship. Any products which shall within one (1) year of delivery, be proved to the Company's satisfaction to have been defective at the time of delivery in these respects will be replaced or repaired by the Company at its option. Freight is the responsibility of the customer. The Company's liability under this limited warranty is limited to such replacement or repair and it shall not be held liable in any form of action for direct or consequential damages to property or person. THE FOREGOING LIMITED WARRANTY IS EXPRESSLY MADE IN LIEU OF ALL OTHER WARRANTIES WHATSOEVER, EXPRESS, IMPLIED AND STATUTORY AND INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.

No employee, agent, distributor, or other person is authorized to give additional warranties on behalf of Boston Gear, nor to assume for Boston Gear any other liability in connection with any of its products, except an officer of Boston Gear by a signed writing.

13. WAIVER of BREACH

No waiver by the Company of any breach of these provisions shall constitute a waiver of any other breach.

14. CONSEQUENTIAL DAMAGES

The Company shall not be liable to the customer or others claiming through the customer for special or consequential charges for any reason whatsoever.

15. LAWS

To the best of the Company's knowledge and belief it is in compliance with all local, state and federal laws. All orders are subject to the condition that the Company's obligation under such local, state and federal laws and Executive Orders, Rules and Regulations issued thereunder, whether now in force or hereafter made effective, shall be no greater as a result of this agreement and no greater than required by such laws and the Company expressly disclaims assumptions of any of the customer's obligations under such laws.

16. GENERAL

Any terms and conditions of a customer's order which are inconsistent with or additional to the terms and conditions hereof shall not be binding on the Company and shall not be considered applicable to any sale or shipment of the Company's products. All such terms and conditions are hereby expressly rejected. No waiver, alteration or modification of any of the Company's terms and conditions shall be binding on the Company unless made in writing and agreed to by a duly authorized official of the Company.

17. PRINTERS, STENOGRAPHIC, and CLERICAL ERRORS

The Company is not responsible for printers' errors made in any of its publications and other forms of printed matter, or for any stenographic and clerical errors. All such errors are subject to correction.

Other products available from Boston Gear

Electrical Products

From fractional horsepower AC and DC motor controllers to a complete offering of complementary motors -including Ratiotrol*, the industry's first stock single phase DC drive, Boston Gear is prepared to meet the broad spectrum of your adjustable speed needs. And with a complete line of complementary clutches, brakes, and other accessories available from Boston Gear, we are prepared to serve your motion control product needs.

Gears and Shaft Accessories

Boston Gear has been a leader and pioneer in manufacturing gearing products since 1877, when we introduced the concept of gear standardization and stock gears -innovations of enormous benefit to power transmission system designers, specifiers, and users. Today, Boston Gear manufactures open gearing at our state-of-the-art facility in Charlotte, NC, where we continue to improve product quality and manufacturing efficiencies with programs like gear cell manufacturing, CAD/CAM design and manufacturing and CNC/DNC programming.

Enclosed Gear Drives

Boston Gear's comprehensive line of enclosed gear drives, including worm, in-line and parallel-shaft helical, miter, and bevel, provides you with the product variety you need to get the job done. Factor in our Guaranteed Same Day Shipment Program, which ensures rapid delivery, or our innovative Reducer Express™, which ensures overnight delivery, and you'll see why Boston Gear's speed reducers are preferred by manufacturers worldwide. In fact, every time you specify a Boston Gear product, you incorporate quality, responsiveness, and Boston Gear's 123-year reputation into your design.

Bearing Products

When you want the freedom to select from the widest range of the highest quality bearings, come to the power transmission specialists at Boston Gear, because we offer the most comprehensive selection of bearing products from one single source in the power transmission industry. Everything from plain sleeve bearings, ball bearings, rod ends, and spherical bearings to linear bearings, pillow blocks and flanged units are in stock.

Fluid Power Products

Since many of today's factories require a combination of mechanical power transmission and compressed air systems for their manufacturing processes, Boston Gear offers a wide range of pneumatic products. From the simple blow gun or recoiling hose used to remove metal chips from a machining operation to the more complex cylinders, control valves, and FRL's used to move product through the assembly process automatically, Boston Gear has what you need.

ALTRA INDUSTRIAL MOTION

Warner Electric

Electromagnetic Clutches and Brakes and Linear Actuators - USA

South Beloit, IL 61080 815-389-3771

For application assistance: 1-800-825-9050

Electromagnetic Clutches and Brakes - Europe

Allonnes, France +33 (0)2 43 43 63 63

Precision Electric Coils and Electromagnetic Clutches and Brakes - USA

Columbia City, IN 46725 260-244-6183

Inertia Dynamics

Spring Set Brakes; Power On and Wrap Spring Clutch/Brakes

Torrington, CT 06790 860-482-4444

Matrix International

Electromagnetic Clutches and Brakes, Pressure Operated Clutches and Brakes

Brechin, Scotland +44 (0) 1356 602000

Huco Dynatork

Precision Couplings and Air Motors

Hertford, UK +44 (0) 1992 501900

Boston Gear

Enclosed and Open Gearing, Electrical and Mechanical P.T. Components

Quincy, MA 02171 617-328-3300

For Customer Service: 1-888-999-9860

For Application Assistance: 1-800-816-5608

Formsprag Clutch

Overrunning Clutches and Holdbacks

Warren, MI 48089 586-758-5000

For application assistance:

Marland Clutch

Roller Ramp and Sprag Type Overrunning Clutches and Backstops

Burr Ridge, IL 60527 630-455-1752

Stieber Clutch

Overrunning Clutches and Holdbacks

Heidelberg, Germany +49 (0)6221 30 47 0

Saftek Friction

Non-asbestos Brake and Clutch Materials

Telford, Shropshire UK 01952 581122

Wichita Clutch and Industrial Clutch

Pneumatic and Oil Immersed Clutches and Brakes - USA

Wichita Falls, TX 76302 940-723-3400

Pneumatic Clutches and Brakes - Europe

Bedford, UK +44 (0)1234 350311

Twiflex Limited

Caliper Brakes and Thrusters Twickenham, Middlesex UK +44 (0) 20 8894 1161

Ameridrives Couplings

Gear Couplings, Mill Spindles, Universal Joints

Erie, PA 16512 814-480-5000

Bibby Transmissions

Disc Gear, Grid Couplings, Overload Clutches

West Yorkshire, UK +44 (0) 1924 460801

Nuttall Gear and Delroyd Worm Gear

Worm Gear and Helical Speed Reducers

Niagara Falls, NY 14302 716-298-4100

Altra Industrial Motion -Asia Pacific and Africa

China 852 2615 9313

Taiwan 886 2 2577 8156

65 487 4464

Thailand 66 2 322 0481

Singapore

Australia 612 9894 0133

S. Africa 27 11 918 4270

www.bostongear.com

Boston Gear

14 Hayward Street • Quincy, MA 02171 617-328-3300 • Fax: 617-479-6238 www.bostongear.com